skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Splicing knot complements and bordered Floer homology
Abstract We show that the integer homology sphere obtained by splicing two nontrivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in the 3-sphere never produces an L-space. The proof uses bordered Floer homology.  more » « less
Award ID(s):
0906258 1150872
PAR ID:
10270691
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Volume:
2016
Issue:
720
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gay, David; Wu, Weiwei (Ed.)
    We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two. We use this corollary to show that the chain complex depicted by Ozsváth, Stipsicz, and Szabó to argue that there is no algebraic obstruction to the existence of knots with trivial epsilon invariant and non-trivial upsilon invariant cannot be realized as the knot Floer complex of a knot. 
    more » « less
  2. Sutured instanton Floer homology was introduced by Kronheimer and Mrowka. In this paper, we prove that for a taut balanced sutured manifold with vanishing second homology, the dimension of the sutured instanton Floer homology provides a bound on the minimal depth of all possible taut foliations on that balanced sutured manifold. The same argument can be adapted to the monopole and even the Heegaard Floer settings, which gives a partial answer to one of Juhasz's conjectures. Using the nature of instanton Floer homology, on knot complements, we can construct a taut foliation with bounded depth, given some information on the representation varieties of the knot fundamental groups. This indicates a mystery relation between the representation varieties and some small depth taut foliations on knot complements, and gives a partial answer to one of Kronheimer and Mrowka's conjecture. 
    more » « less
  3. We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $$\bar{d}$$ and $$\text{}\underline{d}$$ for certain families of three-manifolds. 
    more » « less
  4. We give infinitely many examples of manifold-knot pairs (Y, J) such that Y bounds an integer homology ball, J does not bound a non-locally-flat PL-disk in any integer homology ball, but J does bound a smoothly embedded disk in a rational homology ball. The proof relies on formal properties of involutive Heegaard Floer homology. 
    more » « less
  5. Given an involution on a rational homology 3-sphere Y with quotient the 3-sphere, we prove a formula for the Lefschetz num- ber of the map induced by this involution in the reduced mono- pole Floer homology. This formula is motivated by a variant of Witten’s conjecture relating the Donaldson and Seiberg–Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic ar- gument, making use of an exact triangle in monopole Floer homol- ogy, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Frøyshov invariants as- sociated to spin structures on Y . We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology. 
    more » « less