skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mutational load and adaptive variation are shaped by climate and species range dynamics in Vitis arizonica
Summary Genetic load can reduce fitness and hinder adaptation. While its genetic underpinnings are well established, the influence of environmental variation on genetic load is less well characterized, as is the relationship between genetic load and putatively adaptive genetic variation. This study examines the interplay among climate, species range dynamics, adaptive variation, and mutational load – a genomic measure of genetic load – inVitis arizonica, a wild grape native to the American Southwest.We estimated mutational load and identified climate‐associated adaptive genetic variants in 162 individuals across the species' range. Using a random forest model, we analyzed the relationship between mutational load, climate, and range shifts.Our findings linked mutational load to climatic variation, historical dispersion, and heterozygosity. Populations at the leading edge of range expansion harbored higher load and fewer putatively adaptive alleles associated with climate. Climate projections suggest thatV. arizonicawill expand its range by the end of the century, accompanied by a slight increase in mutational load at the population level.This study advances understanding of how environmental and geographic factors shape genetic load and adaptation, highlighting the need to integrate deleterious variation into broader models of species response to climate change.  more » « less
Award ID(s):
2414478
PAR ID:
10644251
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
247
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 998-1014
Size(s):
p. 998-1014
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Local adaptation to climate is common in plant species and has been studied in a range of contexts, from improving crop yields to predicting population maladaptation to future conditions. The genomic era has brought new tools to study this process, which was historically explored through common garden experiments.In this study, we combine genomic methods and common gardens to investigate local adaptation in red spruce and identify environmental gradients and loci involved in climate adaptation. We first use climate transfer functions to estimate the impact of climate change on seedling performance in three common gardens. We then explore the use of multivariate gene–environment association methods to identify genes underlying climate adaptation, with particular attention to the implications of conducting genome scans with and without correction for neutral population structure.This integrative approach uncovered phenotypic evidence of local adaptation to climate and identified a set of putatively adaptive genes, some of which are involved in three main adaptive pathways found in other temperate and boreal coniferous species: drought tolerance, cold hardiness, and phenology. These putatively adaptive genes segregated into two ‘modules’ associated with different environmental gradients.This study nicely exemplifies the multivariate dimension of adaptation to climate in trees. 
    more » « less
  2. Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers. 
    more » « less
  3. Abstract Stomata play a critical role in regulating plant responses to climate. Where sister species differ in stomatal traits, interspecific gene flow can influence the evolutionary trajectory of trait variation, with consequences to adaptation.Leveraging six latitudinally-distributed transects spanning the natural hybrid zone betweenPopulus trichocarpa–P. balsamifera, we used whole genome resequencing and replicate common garden experiments to test the role that interspecific gene flow and selection play to stomatal trait evolution.While species-specific differences in the distribution of stomata persist betweenP. balsamiferaandP. trichocarpa, hybrids on average resembledP. trichocarpa. Admixture mapping identified several candidate genes associated with stomatal trait variation in hybrids includingTWIST, a homolog ofSPEECHLESSinArabidopsis, that initiates stomatal development via asymmetric cell divisions. Geographic clines revealed candidate genes deviating from genome-wide average patterns of introgression, suggesting restricted gene flow and the maintenance of adaptive differences. Climate associations, particularly with precipitation, indicated selection shapes local ancestry at candidate genes across transects.These results highlight the role of climate in shaping stomatal trait evolution inPopulusand demonstrate how interspecific gene flow creates novel genetic combinations that may enhance adaptive potential in changing environments. 
    more » « less
  4. Summary Vulnerability to embolism varies between con‐generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity.We quantified leaf and stem vulnerability ofQuercus douglasiiusing the optical technique. To assess contributions of genetic variation and phenotypic plasticity to within‐species variation, we quantified the vulnerability of individuals growing in a common garden, but originating from populations along an aridity gradient, as well as individuals from the same wild populations.Intraspecific variation in water potential at which 50% of total embolism in a tissue is observed (P50) was explained mostly by differences between individuals (>66% of total variance) and tissues (16%). There was little between‐population variation in leaf/stem P50in the garden, which was not related to site of origin aridity. Unexpectedly, we observed a positive relationship between wild individual stem P50and aridity.Although there is no local adaptation and only minor phenotypic plasticity in leaf/stem vulnerability inQ. douglasii, high levels of potentially heritable variation within populations or strong environmental selection could contribute to adaptive responses under future climate change. 
    more » « less
  5. Abstract Identifying genomic adaptation is key to understanding species' evolutionary responses to environmental changes. However, current methods to identify adaptive variation have two major limitations. First, when estimating genetic variation, most methods do not account for observational uncertainty in genetic data because of finite sampling and missing genotypes. Second, many current methods use phenomenological models to partition genetic variation into adaptive and non‐adaptive components.We address these limitations by developing a hierarchical Bayesian model that explicitly accounts for observational uncertainty and underlying evolutionary processes. The first layer of the hierarchy is the data model that captures observational uncertainty by probabilistically linking RAD sequence data to genetic variation. The second layer is a process model that represents how evolutionary forces, such as local adaptation, mutation, migration and drift, maintain genetic variation. The third layer is the parameter model, which incorporates our knowledge about biological processes. For example, because most loci in the genome are expected to be neutral, the environmental sensitivity coefficients are assigned a regularized prior centred at zero. Together, the three models provide a rigorous probabilistic framework to identify local adaptation in wild organisms.Analysis of simulated RAD‐seq data shows that our statistical model can reliably infer adaptive genetic variation. To show the real‐world applicability of our method, we re‐analysed RAD‐Seq data (~105 k SNPs) from Willow Flycatchers (Empidonax traillii) in the United States. We found 30 genes close to 47 loci that showed a statistically significant association with temperature seasonality. Gene ontology suggests that several of these genes play a crucial role in egg mineralization, feather development and the ability to withstand extreme temperatures.Moreover, the data and process models can be modified to accommodate a wide range of genetic datasets (e.g. pool and low coverage genome sequencing) and demographic histories (e.g. range shifts) to study climatic adaptation in a wide range of natural systems. 
    more » « less