skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life on the edge: A new toolbox for population‐level climate change vulnerability assessments
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.  more » « less
Award ID(s):
1743711 2137701 2129351
PAR ID:
10547845
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
15
Issue:
11
ISSN:
2041-210X
Format(s):
Medium: X Size: p. 2038-2058
Size(s):
p. 2038-2058
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Species differ dramatically in their prevalence in the natural world, with many species characterized as rare due to restricted geographic distribution, low local abundance and/or habitat specialization.We investigated the ecoevolutionary causes and consequences of rarity with phylogenetically controlled metaanalyses of population genetic diversity, fitness and functional traits in rare and common congeneric plant species. Our syntheses included 252 rare species and 267 common congeners reported in 153 peer‐reviewed articles published from 1978 to 2020 and one manuscript in press.Rare species have reduced population genetic diversity, depressed fitness and smaller reproductive structures than common congeners. Rare species also could suffer from inbreeding depression and reduced fertilization efficiency.By limiting their capacity to adapt and migrate, these characteristics could influence contemporary patterns of rarity and increase the susceptibility of rare species to rapid environmental change. We recommend that future studies present more nuanced data on the extent of rarity in focal species, expose rare and common species to ecologically relevant treatments, including reciprocal transplants, and conduct quantitative genetic and population genomic analyses across a greater array of systems. This research could elucidate the processes that contribute to rarity and generate robust predictions of extinction risks under global change. 
    more » « less
  2. Abstract Genetic diversity plays a key role in maintaining population viability by preventing inbreeding depression and providing the building blocks for adaptation. Understanding how genetic diversity varies across space is, therefore, of key interest in conservation and population genetics.Here, we introducewingen, anrpackage for calculating continuous maps of genetic diversity, including nucleotide diversity, allelic richness, and heterozygosity, from standard genotypic and spatial data using a spatial moving window approach. We provide functions to account for variation in sample size across space using rarefaction, to create kriging‐interpolated maps of genetic diversity, and to mask any areas that are outside the area of interest.Tests with simulated and empirical datasets demonstrate thatwingencan successfully capture variation in genetic diversity across landscapes from both reduced‐representation and whole genome sequencing datasets. For reduced‐representation datasets,wingen's functions can be run easily on a standard laptop computer, and we provide options for parallelization to increase the efficiency of running larger whole genome datasets.wingenprovides novel and computationally tractable tools for creating informative maps of genetic diversity with applications for conservation prioritization as well as population and landscape genetic analyses. 
    more » « less
  3. Summary Vulnerability to embolism varies between con‐generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity.We quantified leaf and stem vulnerability ofQuercus douglasiiusing the optical technique. To assess contributions of genetic variation and phenotypic plasticity to within‐species variation, we quantified the vulnerability of individuals growing in a common garden, but originating from populations along an aridity gradient, as well as individuals from the same wild populations.Intraspecific variation in water potential at which 50% of total embolism in a tissue is observed (P50) was explained mostly by differences between individuals (>66% of total variance) and tissues (16%). There was little between‐population variation in leaf/stem P50in the garden, which was not related to site of origin aridity. Unexpectedly, we observed a positive relationship between wild individual stem P50and aridity.Although there is no local adaptation and only minor phenotypic plasticity in leaf/stem vulnerability inQ. douglasii, high levels of potentially heritable variation within populations or strong environmental selection could contribute to adaptive responses under future climate change. 
    more » « less
  4. Abstract Local adaptation is a fundamental phenomenon in evolutionary biology, with relevance to formation of ecotypes, and ultimately new species, and application to restoration and species’ response to climate change. Reciprocal transplant gardens, a common garden in which ecotypes are planted among home and away habitats, are the gold standard to detect local adaptation in populations.This review focuses on reciprocal transplant gardens to detect local adaptation, especially in grassland species beginning with early seminal studies of grass ecotypes. Fast forward more than half a century, reciprocal gardens have moved into the genomic era, in which the genetic underpinnings of ecotypic variation can now be uncovered. Opportunities to combine genomic and reciprocal garden approaches offer great potential to shed light on genetic and environmental control of phenotypic variation. Our decadal study of adaptation in a dominant grass across the precipitation gradient of the US Great Plains combined genomic approaches and realistic community settings to shed light on controls over phenotype.Common gardens are not without limitations and challenges. A survey of recent studies indicated the modal study uses a tree species, three source sites and one growing site, focuses on one species growing in a monoculture, lasts 3 years, and does not use other experimental manipulations and rarely employs population genetic tools. Reciprocal transplant gardens are even more uncommon, accounting for only 39% of the studies in the literature survey with the rest occurring at a single common site. Reciprocal transplant gardens offer powerful windows into local adaptation when (a) placed across wide environmental gradients to encompass the species’ range; (b) conducted across timespans adequate for detecting responses; (c) employing selection studies among competing ecotypes in community settings and (d) combined with measurements of form and function which ultimately determine success in home and away environments.Synthesis. Reciprocal transplant gardens have been one of the foundations in evolutionary biology for the study of adaptation for the last century, and even longer in Europe. Moving forward, reciprocal gardens of foundational non‐model species, combined with genomic analyses and incorporation of biotic factors, have the potential to further revolutionize evolutionary biology. These field experiments will help to predict and model response to climate change and inform restoration practices. 
    more » « less
  5. Abstract Climate and land use change are two of the primary threats to global biodiversity; however, each species within a community may respond differently to these facets of global change. Although it is typically assumed that species use the habitat that is advantageous for survival and reproduction, anthropogenic changes to the environment can create ecological traps, making it critical to assess both habitat selection (e.g. where species congregate on the landscape) and the influence of selected habitats on the demographic processes that govern population dynamics.We used a long‐term (1958–2011), large‐scale, multi‐species dataset for waterfowl that spans the United States and Canada to estimate species‐specific responses to climate and land use variables in a landscape that has undergone significant environmental change across space and time. We first estimated the effects of change in climate and land use variables on habitat selection and population dynamics for nine species. We then hypothesized that species‐specific responses to environmental change would scale with life‐history traits, specifically: longevity, nesting phenology and female breeding site fidelity.We observed species‐level heterogeneity in the demographic and habitat selection responses to climate and land use change, which would complicate community‐level habitat management. Our work highlights the importance of multi‐species monitoring and community‐level analysis, even among closely related species.We detected several relationships between life‐history traits, particularly nesting phenology, and species' responses to environmental change. One species, the early‐nesting northern pintail (Anas acuta), was consistently at the extreme end of responses to land use and climate predictors and has been a species of conservation concern since their population began to decline in the 1980s. They, and the blue‐winged teal, also demonstrated a positive habitat selection response to the proportion of cropland on the landscape that simultaneously reduced abundance the following year, indicative of susceptibility to ecological traps.By distilling the diversity of species' responses to environmental change within a community, our methodological approach and findings will help improve predictions of community responses to global change and can inform multi‐species management and conservation plans in dynamic landscapes that are based on simple tenets of life‐history theory. 
    more » « less