skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Double-scaled SYK, chords and de Sitter gravity
A<sc>bstract</sc> We study the partition function of 3D de Sitter gravity defined as the trace over the Hilbert space obtained by quantizing the phase space of non-rotating Schwarzschild-de Sitter spacetime. Motivated by the correspondence with double scaled SYK, we identify the Hamiltonian with the gravitational Wilson-line that measures the conical deficit angle. We express the Hamiltonian in terms of canonical variables and find that it leads to the exact same chord rules and energy spectrum as the double scaled SYK model. We use the obtained match to compute the partition function and scalar two-point function in 3D de Sitter gravity.  more » « less
Award ID(s):
2209997
PAR ID:
10644285
Author(s) / Creator(s):
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ O that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy. 
    more » « less
  2. A<sc>bstract</sc> We introduce and study a candidate gravity dual to the double scaled SYK model in the form of an exactly soluble 2D de Sitter gravity model consisting of two spacelike Liouville CFTs with complex central charge adding up toc++c= 26. In [1] it was shown that the two-point function of physical operators in a doubled SYK model matches in the semi-classical limit with the Green’s function of a massive scalar field in 3D de Sitter space. As further evidence of the duality, we adapt a result from Zamolodchikov to compute the boundary two-point function of the 2D Liouville-de Sitter gravity model on a disk and find that it reproduces the exact DSSYK two-point function to all orders inλ=p2/N. We describe how the 2D Liouville-de Sitter gravity model arises from quantizing 3D de Sitter gravity. 
    more » « less
  3. I want to call attention to a simple previously noted fact about the double-scaled version of the SYK model which suggests that it may be holographically dual to de Sitter space. 
    more » « less
  4. It has been argued that the entanglement spectrum of a static patch of de Sitter space must be flat, or what is equivalent, the temperature parameter in the Boltzmann distribution must be infinite. This seems absurd: quantum fields in de Sitter space have thermal behavior with a finite temperature proportional to the inverse radius of the horizon. The resolution of this puzzle is that the behavior of some quantum systems can be characterized by a temperature-like quantity which remains finite as the temperature goes to infinity. For want of a better term we have called this quantity tomperature. In this paper we will explain how tomperature resolves the puzzle in a proposed toy model of de Sitter holography -- the double-scaled limit of SYK theory. 
    more » « less
  5. A<sc>bstract</sc> The p-body SYK model at finite temperature exhibits submaximal chaos and contains stringy-like corrections to the dual JT gravity. It can be solved exactly in two different limits: “large p” SYK 1 ≪p≪Nand “double-scaled” SYKN,p → ∞withλ= 2p2/Nfixed. We clarify the relation between the two. Starting from the exact results in the double-scaled limit, we derive several observables in the large p limit. We compute euclidean 2n-point correlators and out-of-time-order four-point function at long lorentzian times. To compute the correlators we find the relevant asymptototics of the$$ {\mathcal{U}}_q\left( su\left(1,1\right)\right) $$ U q su 1 1 6j-symbol. 
    more » « less