A bstract Due to a well-known, but curious, minus sign in the Gibbons-Hawking first law for the static patch of de Sitter space, the entropy of the cosmological horizon is reduced by the addition of Killing energy. This minus sign raises the puzzling question how the thermodynamics of the static patch should be understood. We argue the confusion arises because of a mistaken interpretation of the matter Killing energy as the total internal energy, and resolve the puzzle by introducing a system boundary at which a proper thermodynamic ensemble can be specified. When this boundary shrinks to zero size the total internal energy of the ensemble (the Brown-York energy) vanishes, as does its variation. Part of this vanishing variation is thermalized, captured by the horizon entropy variation, and part is the matter contribution, which may or may not be thermalized. If the matter is in global equilibrium at the de Sitter temperature, the first law becomes the statement that the generalized entropy is stationary.
more »
« less
Infinite Temperature's Not So Hot
It has been argued that the entanglement spectrum of a static patch of de Sitter space must be flat, or what is equivalent, the temperature parameter in the Boltzmann distribution must be infinite. This seems absurd: quantum fields in de Sitter space have thermal behavior with a finite temperature proportional to the inverse radius of the horizon. The resolution of this puzzle is that the behavior of some quantum systems can be characterized by a temperature-like quantity which remains finite as the temperature goes to infinity. For want of a better term we have called this quantity tomperature. In this paper we will explain how tomperature resolves the puzzle in a proposed toy model of de Sitter holography -- the double-scaled limit of SYK theory.
more »
« less
- Award ID(s):
- 2014215
- PAR ID:
- 10352535
- Date Published:
- Journal Name:
- ArXivorg
- Volume:
- arXiv:2206.01083
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Entanglement, chaos, and complexity are as important for de Sitter space as for AdS, and for black holes. There are similarities and also great differences between AdS and dS in how these concepts are manifested in the space-time geometry.In the first part of this paper the Ryu–Takayanagi prescription, the theory of fast-scrambling, and the holographic complexity correspondence are reformulated for de Sitter space. Criteria are proposed for a holographic model to describe de Sitter space. The criteria can be summarized by the requirement that scrambling and complexity growth must be ``hyperfast."In the later part of the paper I show that a certain limit of the SYK model satisfies the hyperfast criterion. This leads tothe radical conjecture that a limit of SYK is indeed a concrete, computable, holographic model of de Sitter space. Calculations are described which support the conjecture.more » « less
-
A<sc>bstract</sc> Nonlinear sigma models on de Sitter background have proved a useful prototype for quantum gravity in summing the large logarithms which arise from loop corrections. We consider a model whose evolution is described, at leading logarithm order, by the trace of the coincident, doubly differentiated scalar propagator. An analytic approximation for this quantity on an arbitrary expansion history is applied to generalize the resummed de Sitter result to any cosmological background which has experienced primordial inflation. In addition to analytic expressions, we present explicit numerical results for the evolution in a plausible expansion history. The large scales of primordial inflation are transmitted to late times.more » « less
-
A<sc>bstract</sc> We propose a new model of low dimensional de Sitter holography in the form of a pair of double-scaled SYK models at infinite temperature coupled via an equal energy constraintHL=HR. As a test of the duality, we compute the two-point function between two dressed SYK operators$$ {\mathcal{O}}_{\Delta } $$ that preserve the constraint. We find that in the largeNlimit, the two-point function precisely matches with the Green’s function of a massive scalar field of mass squaredm2= 4∆(1 – ∆) in a 3D de Sitter space-time with radiusRdS/GN= 4πN/p2. In this correspondence, the SYK time is identified with the proper time difference between the two operators. We introduce a candidate gravity dual of the doubled SYK model given by a JT/de Sitter gravity model obtained via a circle reduction from 3D Einstein-de Sitter gravity. We comment on the physical meaning of the finite de Sitter temperature and entropy.more » « less
-
The Goheer–Kleban–Susskind no-go theorem says that the symmetry of de Sitter space is incompatible with finite entropy. The meaning and consequences of the theorem are discussed in light of recent developments in holography and gravitational path integrals. The relation between the GKS theorem, Boltzmann fluctuations, wormholes, and exponentially suppressed non-perturbative phenomena suggests that the classical symmetry between different static patches is broken and that eternal de Sitter space—if it exists at all—is an ensemble average.more » « less
An official website of the United States government

