Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
more »
« less
This content will become publicly available on May 19, 2026
Speed breeding transgenic American chestnut trees toward restoration
Abstract The American chestnut (Castanea dentata) was a dominant, foundational forest canopy tree in eastern North America until an imported chestnut blight (caused byCryphonectria parasitica) rendered it functionally extinct across its native range. Biotechnological approaches have the potential to help restore the species, but field-based breeding advances are hampered by long generation times, ≤50% transgene inheritance, and regulatory restrictions on outdoor breeding of transgenic trees. Self-incompatibility and flowering phenology further limit generational advances and field testing of chestnuts. Our work here demonstrates that long generational times and field constraints can be circumvented by producing both male and receptive female flowers in controlled indoor environments. Additionally, we developed an embryo rescue protocol for both indoor and field conditions, in which developing embryos can be extracted and micropropagated from immature seeds between 6- and 8-weeks post pollination. These advances have enabled production of the first homozygous transgenic American chestnuts, which have produced pollen that was used for outdoor controlled pollinations and yielded nearly 100% transgene inheritance by offspring. This work also provides event-specific DNA markers to differentiate transgenic chestnut lines and identify homozygous individuals. We demonstrate that an obligate outcrossing forest tree can reach sexual maturity rapidly in controlled, indoor environments. When coupled with genomic analyses and other biotechnological advances, this procedure could facilitate the reintroduction of this iconic species.
more »
« less
- Award ID(s):
- 2427904
- PAR ID:
- 10644295
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The origin of phenotypic novelty is a perennial question of genetics and evolution. To date, few studies of biological pattern formation specifically address multi-generational aspects of inheritance and phenotypic novelty. For quantitative traits influenced by many segregating alleles, offspring phenotypes are often intermediate to parental values. In other cases, offspring phenotypes can be transgressive to parental values. For example, in the model organismMimulus(monkeyflower), the offspring of parents with solid-colored petals exhibit novel spotted petal phenotypes. These patterns are controlled by an activator-inhibitor gene regulatory network with a small number of loci. Here we develop and analyze a model of hybridization and pattern formation that accounts for the inheritance of a diploid gene regulatory network composed of either homozygous or heterozygous alleles. We find that the resulting model of multi-generational Turing-type pattern formation can reproduce transgressive petal phenotypes similar to those observed inMimulus. The model gives insight into how non-patterned parent phenotypes can yield phenotypically transgressive, patterned offspring, aiding in the development of empirically testable hypotheses.more » « less
-
The origin of phenotypic novelty is a perennial question of genetics and evolution. To date, few studies of biological pattern formation specifically address multi-generational aspects of inheritance and phenotypic novelty. For quantitative traits influenced by many segregating alleles, offspring phenotypes are often intermediate to parental values. In other cases, offspring phenotypes can be transgressive to parental values. For example, in the model organism Mimulus (monkeyflower), the offspring of parents with solid-colored petals exhibit novel spotted petal phenotypes. These patterns are controlled by an activator-inhibitor gene regulatory network with a small number of loci. Here we develop and analyze a model of hybridization and pattern formation that accounts for the inheritance of a diploid gene regulatory network composed of either homozygous or heterozygous alleles. We find that the resulting model of multi-generational Turing-type pattern formation can reproduce transgressive petal phenotypes similar to those observed in Mimulus. The model gives insight into how non-patterned parent phenotypes can yield phenotypically transgressive, patterned offspring, aiding in the development of empirically testable hypotheses.more » « less
-
The origin of phenotypic novelty is a perennial question of genetics and evolution. To date, few studies of biological pattern formation specifically address multi-generational aspects of inheritance and phenotypic novelty. For quantitative traits influenced by many segregating alleles, offspring phenotypes are often intermediate to parental values. In other cases, offspring phenotypes can be transgressive to parental values. For example, in the model organism Mimulus (monkeyflower), the offspring of parents with solid-colored petals exhibit novel spotted petal phenotypes. These patterns are controlled by an activator-inhibitor gene regulatory network with a small number of loci. Here we develop and analyze a model of hybridization and pattern formation that accounts for the inheritance of a diploid gene regulatory network composed of either homozygous or heterozygous alleles. We find that the resulting model of multi-generational Turing-type pattern formation can reproduce transgressive petal phenotypes similar to those observed in Mimulus. The model gives insight into how non-patterned parent phenotypes can yield phenotypically transgressive, patterned offspring, aiding in the development of empirically testable hypotheses.more » « less
-
null (Ed.)Innovations in genetics and genomics have been heavily critiqued as technologies that have widely supported the privatization and commodification of natural resources. However, emerging applications of these tools to ecological restoration challenge narratives that cast genetic technoscience as inevitably enrolled in the enactment and extension of neoliberal capitalism. In this paper, we draw on Langdon Winner’s theory of technological politics to suggest that the context in which genetic technologies are developed and deployed matters for their political outcomes. We describe how genetic approaches to the restoration of functionally extinct American chestnut trees—by non-profit organizations, for the restoration of a wild, heritage forest species, and with unconventional intellectual property protections—are challenging precedents in the political economy of plant biotechnology. Through participant observation, interviews with scientists, and historical analysis, we employ the theoretical lens provided by Karl Polanyi’s double movement to describe how the anticipations and agency of the developers of blight-resistant American chestnut trees, combined with chestnut biology and the context of restoration, have thus far resisted key forms of the genetic privatization and commodification of chestnut germplasm. Still, the politics of blight-resistant American chestnut remain incomplete and undetermined; we thus call upon scholars to use the uneven and socially constructed character of both technologies and neoliberalism to help shape this and other applications of genetic technoscience for conservation.more » « less
An official website of the United States government
