skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 23, 2026

Title: Modeling the Reverberation Response of the Broad-line Region in Active Galactic Nuclei. II. Incorporating Photoionization Models
Abstract The broad emission lines (BELs) emitted by active galactic nuclei respond to variations in the ionizing continuum emission from the accretion disk surrounding the central supermassive black hole (SMBH). This reverberation response provides insights into the structure and dynamics of the broad-line region (BLR). In 2024, we introduced a new forward-modeling tool, the Broad Emission Line Mapping Code (BELMAC), which simulates the velocity-resolved reverberation response of the BLR to an input light curve. In this work, we describe a new version of BELMAC, which uses photoionization models to calculate the cloud luminosities for selected BELs. We investigated the reverberation responses of Hα, Hβ, MgIIλ2800, and CIVλ1550 for models representing a disk-like BLR with Keplerian rotation, radiatively driven outflows, and inflows. The line responses generally provide a good indication of the respective luminosity-weighted radii. However, there are situations where the BLR exhibits a negative response to the driving continuum, causing overestimates of the luminosity-weighted radius. The virial mass derived from the models can differ dramatically from the actual SMBH mass, depending mainly on the disk inclination and velocity field. In single-zone models, the BELs exhibit similar responses and profile shapes; two-zone models, such as a Keplerian disk and a biconical outflow, can reproduce observed differences between high- and low-ionization lines. Radial flows produce asymmetric line profile shapes due to both anisotropic cloud emission and electron scattering in an intercloud medium. These competing attenuation effects complicate the interpretation of profile asymmetries.  more » « less
Award ID(s):
2009508
PAR ID:
10644401
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOPScience
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
991
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The variable continuum emission of an active galactic nucleus (AGN) produces corresponding responses in the broad emission lines, which are modulated by light travel delays, and contain information on the physical properties, structure, and kinematics of the emitting gas region. The reverberation mapping technique, a time series analysis of the driving light curve and response, can recover some of this information, including the size and velocity field of the broad-line region (BLR). Here we introduce a new forward-modeling tool, the Broad Emission Line MApping Code, which simulates the velocity-resolved reverberation response of the BLR to any given input light curve by setting up a 3D ensemble of gas clouds for various specified geometries, velocity fields, and cloud properties. In this work, we present numerical approximations to the transfer function by simulating the velocity-resolved responses to a single continuum pulse for sets of models representing a spherical BLR with a radiatively driven outflow and a disklike BLR with Keplerian rotation. We explore how the structure, velocity field, and other BLR properties affect the transfer function. We calculate the response-weighted time delay (reverberation “lag”), which is considered to be a proxy for the luminosity-weighted radius of the BLR. We investigate the effects of anisotropic cloud emission and matter-bounded (completely ionized) clouds and find the response-weighted delay is only equivalent to the luminosity-weighted radius when clouds emit isotropically and are radiation-bounded (partially ionized). Otherwise, the luminosity-weighted radius can be overestimated by up to a factor of 2. 
    more » « less
  2. Abstract We present reverberation mapping measurements for the prominent ultraviolet broad emission lines of the active galactic nucleus Mrk 817 using 165 spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Our ultraviolet observations are accompanied by X-ray, optical, and near-infrared observations as part of the AGN Space Telescope and Optical Reverberation Mapping Program 2 (AGN STORM 2). Using the cross-correlation lag analysis method, we find significant correlated variations in the continuum and emission-line light curves. We measure rest-frame delayed responses between the far-ultraviolet continuum at 1180 Å and Ly α λ 1215 Å ( 10.4 − 1.4 + 1.6 days), N v λ 1240 Å ( 15.5 − 4.8 + 1.0 days), Si iv + ]O iv λ 1397 Å ( 8.2 − 1.4 + 1.4 days), C iv λ 1549 Å ( 11.8 − 2.8 + 3.0 days), and He ii λ 1640 Å ( 9.0 − 1.9 + 4.5 days) using segments of the emission-line profile that are unaffected by absorption and blending, which results in sampling different velocity ranges for each line. However, we find that the emission-line responses to continuum variations are more complex than a simple smoothed, shifted, and scaled version of the continuum light curve. We also measure velocity-resolved lags for the Ly α and C iv emission lines. The lag profile in the blue wing of Ly α is consistent with virial motion, with longer lags dominating at lower velocities, and shorter lags at higher velocities. The C iv lag profile shows the signature of a thick rotating disk, with the shortest lags in the wings, local peaks at ±1500 km s −1 , and a local minimum at the line center. The other emission lines are dominated by broad absorption lines and blending with adjacent emission lines. These require detailed models, and will be presented in future work. 
    more » « less
  3. Abstract We present a velocity-resolved reverberation mapping analysis of the hypervariable quasar RM160 (SDSS J141041.25+531849.0) atz= 0.359 with 153 spectroscopic epochs of data representing a 10 yr baseline (2013–2023). We split the baseline into two regimes based on the 3× flux increase in the light curve: a “low state” phase during the years 2013–2019 and a “high state” phase during the years 2022–2023. The velocity-resolved lag profiles (VRLPs) indicate that gas with different kinematics dominates the line emission in different states. The HβVRLP begins with a signature of inflow onto the broad-line region (BLR) in the low state, while in the high state it is flatter with less signature of inflow. The HαVRLP begins consistent with a virialized BLR in the low state, while in the high state shows a signature of inflow. The differences in the kinematics between the Balmer lines and between the low state and the high state suggests complex BLR dynamics. We find that the BLR radius and velocity (both FWHM andσ) do not obey a constant virial product throughout the monitoring period. We find that the BLR lags and continuum luminosity are correlated, consistent with rapid response of the BLR gas to the illuminating continuum. The BLR kinematic profile changes in unpredictable ways that are not related to continuum changes and reverberation lag. Our observations indicate that nonvirial kinematics can significantly contribute to observed line profiles, suggesting caution for black hole mass estimation in luminous and highly varying quasars like RM160. 
    more » « less
  4. Abstract We have modeled the velocity-resolved reverberation response of the Hβbroad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the HβBLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log 10 ( FWHM / σ ) , on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβemission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends. 
    more » « less
  5. Abstract This work studies the relationship between accretion-disk size and quasar properties, using a sample of 95 quasars from the Sloan Digital Sky Survey Reverberation Mapping Project with measured lags between thegandiphotometric bands. Our sample includes disk lags that are both longer and shorter than predicted by the Shakura and Sunyaev model, requiring explanations that satisfy both cases. Although our quasars each have one lag measurement, we explore the wavelength-dependent effects of diffuse broad-line region (BLR) contamination through our sample’s broad redshift range, 0.1 <z< 1.2. We do not find significant evidence of variable diffuse Feiiand Balmer nebular emission in the rms spectra, nor from Anderson–Darling tests of quasars in redshift ranges with and without diffuse nebular emission falling in the observed-frame filters. Contrary to previous work, we do not detect a significant correlation between the measured continuum and BLR lags in our luminous quasar sample, similarly suggesting that our continuum lags are not dominated by diffuse nebular emission. Similar to other studies, we find that quasars with larger-than-expected continuum lags have lower 3000 Å luminosities, and we additionally find longer continuum lags with lower X-ray luminosities and black hole masses. Our lack of evidence for diffuse BLR contribution to the lags indicates that the anticorrelation between continuum lag and luminosity is not likely to be due to the Baldwin effect. Instead, these anticorrelations favor models in which the continuum lag increases in lower-luminosity active galactic nuclei, including scenarios featuring magnetic coupling between the accretion disk and X-ray corona, and/or ripples or rims in the disk. 
    more » « less