skip to main content

Title: Limit Cycle Oscillation Suppression Using a Closed-loop Nonlinear Active Flow Control Technique
This paper presents a nonlinear control method, which achieves simultaneous fluid flow velocity control and limit cycle oscillation (LCO) suppression in a flexible airfoil. The proposed control design is based on a dynamic model that incorporates the fluid structure interactions (FSI) in the airfoil. The FSI describe how the flow field velocity at the surface of a flexible structure gives rise to fluid forces acting on the structure. In the proposed control method, the LCO are controlled via control of the flow field velocity near the surface of the airfoil using surface-embedded synthetic jet actuators. Specifically, the flow field velocity profile is driven to a desired time-varying profile, which results in a LCO-stabilizing fluid forcing function acting on the airfoil. A Lyapunov-based stability analysis is used to prove that the active flow control system asymptotically converges to the LCO-stabilizing forcing function that suppresses the LCO. Numerical simulation results are provided to demonstrate the performance of the proposed active flow-and-LCO suppression method.
Authors:
; ;
Award ID(s):
1809790
Publication Date:
NSF-PAR ID:
10250502
Journal Name:
IEEE Conference on Decision and Control
Page Range or eLocation-ID:
5507 to 5512
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents the first 3D two-way coupled fluid structure interaction (FSI) simulation of a hybrid anechoic wind tunnel (HAWT) test section with modeling all important effects, such as turbulence, Kevlar wall porosity and deflection, and reveals for the first time the complete 3D flow structure associated with a lifting model placed into a HAWT. The Kevlar deflections are captured using finite element analysis (FEA) with shell elements operated under a membrane condition. Three-dimensional RANS CFD simulations are used to resolve the flow field. Aerodynamic experimental results are available and are compared against the FSI results. Quantitatively, the pressure coefficientsmore »on the airfoil are in good agreement with experimental results. The lift coefficient was slightly underpredicted while the drag was overpredicted by the CFD simulations. The flow structure downstream of the airfoil showed good agreement with the experiments, particularly over the wind tunnel walls where the Kevlar windows interact with the flow field. A discrepancy between previous experimental observations and juncture flow-induced vortices at the ends of the airfoil is found to stem from the limited ability of turbulence models. The qualitative behavior of the flow, including airfoil pressures and cross-sectional flow structure is well captured in the CFD. From the structural side, the behavior of the Kevlar windows and the flow developing over them is closely related to the aerodynamic pressure field induced by the airfoil. The Kevlar displacement and the transpiration velocity across the material is dominated by flow blockage effects, generated aerodynamic lift, and the wake of the airfoil. The airfoil wake increases the Kevlar window displacement, which was previously not resolved by two-dimensional panel-method simulations. The static pressure distribution over the Kevlar windows is symmetrical about the tunnel mid-height, confirming a dominantly two-dimensional flow field.« less
  2. The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexitiesmore »of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k = fc=U1 = 0.06-0.18, pitching amplitude of 0 = 75 and heaving amplitude of h0 = 0:6c. The experimental work involves the use of two-component particle image velocimetry (PIV) measurements conducted in a wind tunnel facility at Oregon State University. Velocity fields obtained from the PIV measurements are analyzed qualitatively and quantitatively to provide a description of the dynamics of LEVs and other flow structures that may be present during dynamic stall. Due to the difficulties of accurately measuring aerodynamic forces in highly unsteady flows in wind tunnels, a reduced-order model based on the vortex-impulse theory is proposed for estimating the aerodynamic loadings and power output using flow field data. The reduced-order model is shown to be dominated by two terms that have a clear physical interpretation: (i) the time rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski force which indirectly represents the history effect of vortex shedding in the far wake. Furthermore, the effects of a bio-inspired flow control mechanism based on deforming airfoil surfaces on the flow dynamics and energy harvesting performance are investigated. The results show that the aerodynamic loadings, and hence power output, are highly dependent on the formation, growth rate, trajectory and detachment of the LEV. It is shown that the energy harvesting efficiency increases with increasing reduced frequency, peaking at 25% when k = 0.14, agreeing very well with published numerical results. At this optimal reduced frequency, the time scales of the LEV evolution and airfoil kinematics are matched, resulting in highly correlated aerodynamic load generation and airfoil motion. When operating at k > 0:14, it is shown that the aerodynamic moment and airfoil pitching motion become negatively correlated and as a result, the energy harvesting performance is deteriorated. Furthermore, by using a deforming airfoil surface at the leading and trailing edges, the peak energy harvesting efficiency is shown to increase by approximately 17% and 25% relative to the rigid airfoil, respectively. The performance enhancement is associated with enhanced aerodynamic forces for both the deforming leading and trailing edges. In addition, The deforming trailing edge airfoil is shown to enhance the correlation between the aerodynamic moment and pitching motion at higher reduced frequencies, resulting in a peak efficiency at k = 0:18 as opposed to k = 0:14 for the rigid airfoil.« less
  3. Large-eddy simulations (LES) over a NACA0018 airfoil at a low Reynolds number (Re = 50, 000) fluid flow are performed to investigate the effect of active flow control at different angles of attack (AOA = 10 to 20 degrees) using low amplitude surface morphing backward (opposite to the airfoil’s forward motion) traveling wave actuation on the suction (upper) side of the airfoil. The curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. While our previous simulations indicated the effectiveness of traveling waves at near stall angle of attack (AOA = 15 degrees), the effectivenessmore »of these waves at post-stall AOA such as AOA = 20 degrees is not understood. The actuation amplitude of the surface morphing traveling waves is a* = 0.001 (a* = a/L, a: amplitude, L: chord length of the airfoil), and the range of the reduced frequency (f* = fL/U, f: frequency, U: free stream velocity) is from f* = 4 to 16. The results of the simulations at the post-stall angle of attack (AOA = 20 degrees) show that the lift coefficient, CL, increases by about 23%, and the drag coefficient, CD, decreases by about 54% within the frequency range from f* = 8 to f* = 10.« less
  4. This experimental study focuses on fluid-structure interaction (FSI) for a thin compliant panel under a shock/boundary layer interaction (SBLI) generated by a 2D compression ramp in a Mach 2 wind tunnel. In previous work, we have studied the FSI for this configuration using simultaneous fast-response pressure-sensitive paint (PSP) and digital image correlation (DIC). Simultaneous PSP/DIC allows for examination of the relationship between the dynamic panel displacement and surface pressure loading, respectively. Spectral analysis showed that pressure fluctuations within the interaction region and shock-foot unsteadiness tend to lock to the first mode resonant frequency of the compliant panel. The current studymore »aims to utilize synchronous high-speed stereoscopic PIV (25 kHz) and DIC (5 kHz) techniques to better understand the coupling between the flow field and the panel displacement field. The PIV is obtained in a streamwise-spanwise plane located at 15% of the boundary layer height. Thin compliant polycarbonate panel with thicknesses of 1 mm is utilized, which has a first-mode vibrational frequency of 407 Hz. The 1 mm panel out-of-plane displacement amplitude was up to 15% of the boundary layer thickness. The analysis includes low-pass and band-pass filtering of the velocity data, including the surrogate separation line, and cross-correlation analysis between panel displacement and velocity. The results indicate a clear coupling of the panel motion and velocity field, but the spectral analysis suffers from limited time records associated with the pulse-burst laser used for PIV. Future work will focus on collecting more data to improve the statistical convergence of the results.« less
  5. Abstract

    Flapping insect wings experience appreciable deformation due to aerodynamic and inertial forces. This deformation is believed to benefit the insect’s aerodynamic force production as well as energetic efficiency. However, the fluid-structure interaction (FSI) models used to estimate wing deformations are often computationally demanding and are therefore challenged by parametric studies. Here, we develop a simple FSI model of a flapping wing idealized as a two-dimensional pitching-plunging airfoil. Using the Lagrangian formulation, we derive the reduced-order structural framework governing wing’s elastic deformation. We consider two fluid models: quasi-steady Deformable Blade Element Theory (DBET) and Unsteady Vortex Lattice Method (UVLM). DBETmore »is computationally economical but does not provide insight into the flow structure surrounding the wing, whereas UVLM approximates flows but requires more time to solve. For simple flapping kinematics, DBET and UVLM produce similar estimates of the aerodynamic force normal to the surface of a rigid wing. More importantly, when the wing is permitted to deform, DBET and UVLM agree well in predicting wingtip deflection and aerodynamic normal force. The most notable difference between the model predictions is a roughly 20° phase difference in normal force. DBET estimates wing deformation and force production approximately 15 times faster than UVLM for the parameters considered, and both models solve in under a minute when considering 15 flapping periods. Moving forward, we will benchmark both low-order models with respect to high fidelity computational fluid dynamics coupled to finite element analysis, and assess the agreement between DBET and UVLM over a broader range of flapping kinematics.

    « less