Iowa's farmlands, celebrated for their remarkable agricultural productivity, are facing pressing environmental challenges, including soil erosion, waterway nitrogen pollution, and vulnerability to extreme weather events. These issues imperil the state's agricultural sector's long-term sustainability and economic stability. Despite substantial investments from governmental and non-governmental entities to encourage conservation practice use, adoption rates remain persistently low. In this report, we use quantitative, qualitative, and social network analysis on a sample of 38 farmers to understand how social networks shape their adoption of conservation practices. We analyze data through a systems framework and compare counties with high- and low-adoption of conservation practices to assess influences from the individual farmer level to the broader societal context. We conclude with a discussion of strategic implications to promote conservation adoption.
more »
« less
Farmers' Social Capital in Agricultural Decision‐Making
Abstract Reducing tillage is a key goal for conservation and regenerative agriculture, yet research has struggled to identify ways to increase the use of the practice among farmers. Recent scholarship has identified social capital as an important piece of the adoption puzzle. However, the ways in which farmers' social capital influences conservation practice use are seldom identified or explored. In this study, we tested the effects of three measures of social capital on the adoption of no‐till among 1,523 row crop farmers in the United States Corn Belt. Specifically, we operationalized the extent to which farmers' social networks, network trust, and community conservation norms affect intra‐individual processes and thus influence farmers' decisions regarding adoption. Our results identified key mechanisms for the promotion of conservation practices through social capital. Subjective conservation norms emerged as a main pathway through which farmers' social capital influenced their use of no‐till, indicating that networks, network trust, and community norms can increase adoption through affective paths. We conclude that academic research and policy experts should continue to situate farmers as social actors and pay heed to the norms and cultural expectations surrounding agricultural conservation practices.
more »
« less
- Award ID(s):
- 2224712
- PAR ID:
- 10644456
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Rural Sociology
- Volume:
- 90
- Issue:
- 2
- ISSN:
- 0036-0112
- Page Range / eLocation ID:
- 216 to 241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices.more » « less
-
null (Ed.)Technical best management practices are the dominant approach promoted to mitigate agriculture’s significant contributions to environmental degradation. Yet very few social science studies have examined how farmers actually use these practices. This study focuses on the outcomes of farmers’ technical best management practice adoption related to synthetic nitrogen fertilizer management in the context of Midwestern corn agriculture in the United States. Moving beyond predicting the adoption of nitrogen best management practices, I use structural equation modeling and data from a sample of over 2500 farmers to analyze how the number of growing season applications a farmer uses influences the rate at which synthetic nitrogen is applied at the field-level. I find that each additional application of N during the growing season is associated with an average increase of 2.4 kg/ha in farmers’ average N application rate. This result counters expectation for the outcome of this practice and may suggest that structural pressures are leading farmers to use additional growing season applications to ensure sufficiently high N rates, rather than allowing them to reduce rates. I conclude by discussing the implication of this study for future research and policy.more » « less
-
Abstract Granular temporal and spatial scale observations of conservation practices are essential for identifying changes in the production systems that improve soil health and water quality and inform long-term agricultural research and adaptive policy development. In this study, we demonstrate an innovative use of farmer practice survey data and what can be uniquely known from a detailed survey that targets specific farm groups with a regional focus over multiple consecutive years. Using three years of survey data ( n = 3914 respondents), we describe prevailing crop rotation, tillage, and cover crop practice use in four Midwestern US states. Like national metrics, the results confirm dominant practices across the landscape, including corn-soybean rotation, little use of continuous no-till, and the limited use of cover crops. Our detailed regional survey further reveals differences by state for no-till and cover crop adoption rates that were not captured in federal datasets. For example, 66% of sampled acreage in the Midwest has corn and soybean rotation, with Illinois having the highest rate (72%) and Michigan the lowest (41%). In 2018, 20% of the corn acreage and 38% of the soybean acreage were in no-till, and 13% of the corn acres and 9% of the soybean acres were planted with a cover crop. Cover crop adoption rates fluctuate from year to year. Results demonstrate the value of a farmer survey at state scales over multiple years in complementing federal statistics and monitoring state and yearly differences in practice adoption. Agricultural policies and industry heavily depend on accurate and timely information that reflects spatial and temporal dynamics. We recommend building an agricultural information exchange and workforce that integrates diverse data sources with complementary strengths to provide a greater understanding of agricultural management practices that provide baseline data for prevailing practices.more » « less
-
null (Ed.)Conservation tillage in American soybean production has become increasingly common, improving soil health while reducing soil erosion and fuel consumption. This trend has been reinforced by the widespread adoption of glyphosate-based weed control systems. Many weed species have since evolved to resist glyphosate, reducing its effectiveness. We provide evidence that the spread of glyphosate-resistant weeds is responsible for significant reductions in the use of conservation tillage in soybean production. We estimate reduced-form and structural probit models of tillage choice, using a large panel of field-level soybean management decisions from across the United States spanning 1998-2016. We find that the first emergence of glyphosate-resistant weed species has little initial effect on tillage practices, though by the time that eight glyphosate-resistant weed species are identified, conservation tillage and no-till use fall by 3.9 percentage points and 7.6 percentage points, respectively. We further find that when ten glyphosate-resistant species are present, the predicted adoption rate of non-glyphosate herbicides rises 50 percentage points, and that the availability of non-glyphosate herbicides facilitates continued use of conservation tillage as glyphosate-resistant weeds proliferate. Using a simple benefits transfer model, we conservatively estimate that between 2008 and 2016 farmers' tillage responses to the spread of glyphosate-resistant weeds have caused water quality and climate damages via fuel emissions valued at nearly $245 million. This value does not account for climate damages due to carbon released during soil disruptions and is likely to grow as glyphosate resistance becomes more widespread and more farmers turn to tillage for supplemental weed control.more » « less
An official website of the United States government

