Mn 3 Sn, a metallic antiferromagnet with an anti-chiral 120° spin structure, generates intriguing magneto-transport signatures such as a large anomalous Hall effect, spin-polarized current with novel symmetries, anomalous Nernst effect, and magneto-optic Kerr effect. When grown epitaxially as MgO(110)[001]∥Mn3Sn(01¯1¯0)[0001], Mn3Sn experiences a uniaxial tensile strain, which changes the bulk sixfold anisotropy to a twofold perpendicular magnetic anisotropy (PMA). Here, we investigate the field-assisted spin–orbit-torque (SOT)-driven dynamics in single-domain Mn3Sn with PMA. We find that for non-zero external magnetic fields, the magnetic octupole moment of Mn3Sn can be switched between the two stable states if the input current is between two field-dependent critical currents. Below the lower critical current, the magnetic octupole moment exhibits a stationary state in the vicinity of the initial stable state. On the other hand, above the higher critical current, the magnetic octupole moment shows oscillatory dynamics which could, in principle, be tuned from the 100s of megahertz to the terahertz range. We obtain approximate analytic expressions of the two critical currents that agree very well with the numerical simulations for experimentally relevant magnetic fields. We also obtain a unified functional form of the switching time vs the input current for different magnetic fields. Finally, we show that for lower values of Gilbert damping (α≲2×10−3), the critical currents and the final steady states depend significantly on α. The numerical and analytic results presented in our work can be used by both theorists and experimentalists to understand the SOT-driven order dynamics in PMA Mn3Sn and design future experiments and devices.
more »
« less
Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets
Abstract Antiferromagnets (AFMs) have the natural advantages of terahertz spin dynamics and negligible stray fields, thus appealing for use in domain-wall applications. However, their insensitive magneto-electric responses make controlling them in domain-wall devices challenging. Recent research on noncollinear chiral AFMs Mn3X (X = Sn, Ge) enabled us to detect and manipulate their magnetic octupole domain states. Here, we demonstrate a current-driven fast magnetic octupole domain-wall (MODW) motion in Mn3X. The magneto-optical Kerr observation reveals the Néel-like MODW of Mn3Ge can be accelerated up to 750 m s-1with a current density of only 7.56 × 1010A m-2without external magnetic fields. The MODWs show extremely high mobility with a small critical current density. We theoretically extend the spin-torque phenomenology for domain-wall dynamics from collinear to noncollinear magnetic systems. Our study opens a new route for antiferromagnetic domain-wall-based applications.
more »
« less
- Award ID(s):
- 2049979
- PAR ID:
- 10644567
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions,etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3with 10−9strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.more » « less
-
Abstract In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra‐fast, energy‐efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin‐orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture. The time‐resolved magneto‐optical Kerr effect (TR‐MOKE) has been a successful tool for probing antiferromagnetic dynamics in bulk materials, thanks to its sub‐picosecond (sub‐ps) time resolution. Yet, its application to nanometer‐scale thin films has been limited by the difficulty of detecting weak signals in such small volumes. In this study, the first successful observation of antiferromagnetic dynamics are presented in nanometer‐thick orthoferrite films using the pump‐probe technique to detect TR‐MOKE signal. This paper report an exceptionally low damping constant of 1.5 × 10−4and confirms the AFM magnonic nature of these dynamics through angular‐dependent measurements. Furthermore, it is observed that electrical currents can potentially modulate these dynamics via SOT. The findings lay the groundwork for developing tunable, energy‐efficient spintronic devices, paving the way for advancements in next‐generation spintronic applications.more » « less
-
We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is = (4.9 ± 0.9) × 106 , and a lower bound for the magnitude of the spin Nernst ratio is −0.61 ± 0.11. The spin Nernst ratio for Bi2Se3is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy.more » « less
-
Abstract Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small‐size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element‐resolved scanning transmission X‐ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line‐scan spin profile of the single skyrmion shows a Néel‐type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI‐based heterostructures with great promise for low‐energy spintronic devices.more » « less
An official website of the United States government

