Abstract We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity in cellular resolution. Our microscope uses a new adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies), and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neural activity of mouse cortexin vivo. Our method provides a new sampling strategy in laser-scanning two-photon microscopy, and will be powerful for high-throughput imaging of neural activity.
more »
« less
High-speed two-photon microscopy with adaptive line-excitation
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortexin vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
more »
« less
- Award ID(s):
- 1847141
- PAR ID:
- 10644606
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- Journal Name:
- Optica
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2334-2536
- Page Range / eLocation ID:
- 1138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity in cellular resolution. Our microscope uses line illumination with an adaptive sampling scheme. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the tissue, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies), and samples a large area of them in a single measurement. This significantly increases the imaging speed and reduces the overall laser power on the sample. We characterized the imaging resolution and verified the concept of adaptive sampling through phantom samples. Our approach holds great promise for high-throughput neural activity imaging.more » « less
-
Point scanning imaging systems (e.g. scanning electron or laser scanning confocal microscopes) are perhaps the most widely used tools for high resolution cellular and tissue imaging. Like all other imaging modalities, the resolution, speed, sample preservation, and signal-to-noise ratio (SNR) of point scanning systems are difficult to optimize simultaneously. In particular, point scanning systems are uniquely constrained by an inverse relationship between imaging speed and pixel resolution. Here we show these limitations can be miti gated via the use of deep learning-based super-sampling of undersampled images acquired on a point-scanning system, which we termed point -scanning super-resolution (PSSR) imaging. Oversampled ground truth images acquired on scanning electron or Airyscan laser scanning confocal microscopes were used to generate semi-synthetictrain ing data for PSSR models that were then used to restore undersampled images. Remarkably, our EM PSSR model was able to restore undersampled images acquired with different optics, detectors, samples, or sample preparation methods in other labs . PSSR enabled previously unattainable xy resolution images with our serial block face scanning electron microscope system. For fluorescence, we show that undersampled confocal images combined with a multiframe PSSR model trained on Airyscan timelapses facilitates Airyscan-equivalent spati al resolution and SNR with ~100x lower laser dose and 16x higher frame rates than corresponding high-resolution acquisitions. In conclusion, PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed, and sensitivity.more » « less
-
Goda, Keisuke; Tsia, Kevin K. (Ed.)We present a new deep compressed imaging modality by scanning a learned illumination pattern on the sample and detecting the signal with a single-pixel detector. This new imaging modality allows a compressed sampling of the object, and thus a high imaging speed. The object is reconstructed through a deep neural network inspired by compressed sensing algorithm. We optimize the illumination pattern and the image reconstruction network by training an end-to-end auto-encoder framework. Comparing with the conventional single-pixel camera and point-scanning imaging system, we accomplish a high-speed imaging with a reduced light dosage, while preserving a high imaging quality.more » « less
An official website of the United States government

