Abstract Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors.
more »
« less
This content will become publicly available on March 1, 2026
Optical Absorption Spectroscopy Probes Water Wire and Its Ordering in a Hydrogen-Bond Network
Water wires, quasi-one-dimensional chains composed of hydrogen-bonded (H-bonded) water molecules, play a fundamental role in numerous chemical, physical, and physiological processes. Yet direct experimental detection of water wires has been elusive so far. Based on advanced many-body theory that includes electron-hole interactions, we report that optical absorption spectroscopy can serve as a sensitive probe of water wires and their ordering. In both liquid and solid water, the main peak of the spectrum is discovered to be a charge-transfer exciton. In water, the charge-transfer exciton is strongly coupled to the H-bonding environment where the exciton is excited between H-bonded water molecules with a large spectral intensity. In regular ice, the spectral weight of the charge-transfer exciton is enhanced by a collective excitation occurring on proton-ordered water wires, whose spectral intensity scales with the ordering length of water wire. The spectral intensity and excitonic interaction strength reaches its maximum in ice XI, where the long-range ordering length yields the most pronounced spectral signal. Our findings suggest that water wires, which widely exist in important physiological and biological systems and other phases of ice, can be directly probed by this approach.
more »
« less
- Award ID(s):
- 2114081
- PAR ID:
- 10644608
- Publisher / Repository:
- Physical Review Journals
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network. Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network.more » « less
-
We report modulation of exciton dissociation dynamics in quantum dots (QD) connected with photochromic molecules. Our results show that switching the configuration of photochromic molecules changes the inter-QD potential barrier height which has a major impact on the charge tunnelling and exciton dissociation. The switching of the dominant exciton decay pathway between the radiative recombination and exciton dissociation results in switchable photoluminescence intensity from QDs. Implications of our findings for optical memory and optical computing applications are discussed.more » « less
-
The Fe intercalated transition metal dichalcogenide (TMD), Fe 1 / 3 NbS 2 , exhibits remarkable resistance switching properties and highly tunable spin ordering phases due to magnetic defects. We conduct synchrotron x-ray scattering measurements on both underintercalated ( x = 0.32 ) and overintercalated ( x = 0.35 ) samples. We discover a new charge order phase in the overintercalated sample, where the excess Fe atoms lead to a zigzag antiferromagnetic order. The agreement between the charge and magnetic ordering temperatures, as well as their intensity relationship, suggests a strong magnetoelastic coupling as the mechanism for the charge ordering. Our results reveal the first example of a charge order phase among the intercalated TMD family and demonstrate the ability to stabilize charge modulation by introducing electronic correlations, where the charge order is absent in bulk 2 H − NbS 2 compared to other pristine TMDs.more » « less
-
Carreira, Erick M. (Ed.)In highly concentrated salt solutions, the water hydrogen bond (H-bond) network is completely disrupted by the presence of ions. Water is forced to restructure as dictated by the water-ion and ion-ion interactions. Using ultrafast polarization-selective pump-probe spectroscopy (PSPP) of the OD stretch of dilute HOD, we demonstrate that the limited water-water H-bonding present in concentrated lithium chloride solutions (up to 4 waters per ion pair) is, on average, stronger than that occurring in bulk water. Furthermore, information on the orientational dynamics and the angular restriction of water H-bonded to both water oxygens and chloride anions were obtained through analysis of the frequency-dependent anisotropy decays. It was found that the water showed increasing restriction and slowing at frequencies correlated with strong H-bonding when the salt concentration was increased. The angular restriction of the water molecules and strengthening of water-water H-bonds are due to the formation of a water-ion network not present in bulk water and dilute salt solutions. Finally, the structural evolution of the ionic medium was observed through spectral diffusion of the OD stretch using 2D IR spectroscopy. Compared to pure water, there is significant slowing of the biexponential spectral diffusion dynamics. The slowest component of the spectral diffusion, 13 ps, is virtually identical to the time for complete orientation randomization of HOD measured with the PSPP experiments. This result suggests that the slowest component of the spectral diffusion reflects rearrangement of water molecules in the water-ion network.more » « less
An official website of the United States government
