skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 25, 2025

Title: Do Neural Scaling Laws Exist on Graph Self-Supervised Learning?
Self-supervised learning(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility https://github.com/HaitaoMao/GraphSSLScaling.  more » « less
Award ID(s):
2406648 2406647
PAR ID:
10644629
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
PMLR
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain, aiming to develop graph models trained on extensive and diverse data to enhance their applicability across various tasks and domains. Developing GFMs presents unique challenges over traditional Graph Neural Networks (GNNs), which are typically trained from scratch for specific tasks on particular datasets. The primary challenge in constructing GFMs lies in effectively leveraging vast and diverse graph data to achieve positive transfer. Drawing inspiration from existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a ``graph vocabulary'', in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, expressiveness, and stability. Such a vocabulary perspective can potentially advance the future GFM design in line with the neural scaling laws. All relevant resources with GFM design can be found here. 
    more » « less
  2. Abstract Many machine learning models based on neural networks exhibit scaling laws: their performance scales as power laws with respect to the sizes of the model and training data set. We use large-N field theory methods to solve a model recently proposed by Maloney, Roberts and Sully which provides a simplified setting to study neural scaling laws. Our solution extends the result in this latter paper to general nonzero values of the ridge parameter, which are essential to regularize the behavior of the model. In addition to obtaining new and more precise scaling laws, we also uncover a duality transformation at the diagrams level which explains the symmetry between model and training data set sizes. The same duality underlies recent efforts to design neural networks to simulate quantum field theories. 
    more » « less
  3. Enabling effective and efficient machine learning (ML) over large-scale graph data (e.g., graphs with billions of edges) can have a great impact on both industrial and scientific applications. However, existing efforts to advance large-scale graph ML have been largely limited by the lack of a suitable public benchmark. Here we present OGB Large-Scale Challenge (OGB-LSC), a collection of three real-world datasets for facilitating the advancements in large-scale graph ML. The OGB-LSC datasets are orders of magnitude larger than existing ones, covering three core graph learning tasks—link prediction, graph regression, and node classification. Furthermore, we provide dedicated baseline experiments, scaling up expressive graph ML models to the massive datasets. We show that expressive models significantly outperform simple scalable baselines, indicating an opportunity for dedicated efforts to further improve graph ML at scale. Moreover, OGB-LSC datasets were deployed at ACM KDD Cup 2021 and attracted more than 500 team registrations globally, during which significant performance improvements were made by a variety of innovative techniques. We summarize the common techniques used by the winning solutions and highlight the current best practices in large-scale graph ML. Finally, we describe how we have updated the datasets after the KDD Cup to further facilitate research advances. 
    more » « less
  4. Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes (< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification. 
    more » « less
  5. Graph-theoretic algorithms and graph machine learning models are essential tools for addressing many real-life problems, such as social network analysis and bioinformatics. To support large-scale graph analytics, graph-parallel systems have been actively developed for over one decade, such as Google’s Pregel and Spark’s GraphX, which (i) promote a think-like-a-vertex computing model and target (ii) iterative algorithms and (iii) those problems that output a value for each vertex. However, this model is too restricted for supporting the rich set of heterogeneous operations for graph analytics and machine learning that many real applications demand. In recent years, two new trends emerge in graph-parallel systems research: (1) a novel think-like-a-task computing model that can efficiently support the various computationally expensive problems of subgraph search; and (2) scalable systems for learning graph neural networks. These systems effectively complement the diversity needs of graph-parallel tools that can flexibly work together in a comprehensive graph processing pipeline for real applications, with the capability of capturing structural features. This tutorial will provide an effective categorization of the recent systems in these two directions based on their computing models and adopted techniques, and will review the key design ideas of these systems. 
    more » « less