Hydrogels have emerged as a crucial class of materials within the field of tissue engineering. There is growing interest in matching the mechanical properties of hydrogel scaffolds to tissues in the human body and optimizing these properties for cell growth and differentiation. Gelatin methacrylate (GelMA) is a well-accepted, biocompatible hydrogel with tunable mechanical properties. However, the effects of various formulation parameters on its mechanical properties are not well understood. In this study, an array of GelMA scaffold fabrication parameters is evaluated by varying GelMA concentration and ultraviolet light exposure time. Our overarching goal is to characterize the mechanical properties through ultrasound and rheological measurements, providing a framework for GelMA scaffold selection. Pulse-echo ultrasound techniques were used to non-invasively determine the sound speed and attenuation of the scaffolds, revealing significant dependence on GelMA concentration. Steady shear rate and strain- and frequency-controlled oscillatory shear tests using a rotational rheometer (Model: DHR-2, TA Instruments) revealed a range in the levels of shear-thinning as well as viscoelasticity and showed moduli-dependence on both GelMA concentration and light exposure time. Together, this acoustic and rheological characterization can be used to inform the selection of GelMA scaffolds in tissue engineering applications.
more »
« less
Development of GelMA-Based Hydrogel Scaffolds with Tunable Mechanical Properties for Applications in Peripheral Nerve Regeneration
Peripheral nerve injuries (PNIs) have a significant impact on the quality of life for patients suffering from trauma or disease. In injuries with critical nerve gaps, PN regeneration requires tissue scaffolds with appropriate physiological properties that promote cell growth and functions. Hydrogel scaffolds represent a promising platform for engineering soft tissue constructs that meet key physiological requirements. Nonetheless, ongoing innovation remains essential, as current designs continue to fall short of replicating the functional performance of autografts in bridging critical-sized nerve defects. In this study, gelatin methacrylate (gelMA)-based hydrogels are evaluated to fully characterize their pore structure, compressive stiffness, viscoelasticity, and 3D bioprintability. Hyaluronic acid (HA) and single-walled carbon nanotubes (SWCNTs) are explored as gelMA additives to modify viscoelastic and electrically conductive properties, respectively. Finally, Schwann cell (SC) and human umbilical vein endothelial cell (HUVEC) growth and functions are quantified to assess the biocompatibility of the hydrogel composites as materials for nerve scaffold fabrication. It was found that the microstructure and mechanical properties of gelMA-based hydrogels can be precisely controlled by modifying the concentrations of each component. The addition of HA led to altered viscoelastic properties of the cured structures and SWCNTs increased electrical conductivity, with both additives maintaining cytocompatibility while influencing the protein expression of both SCs and HUVECs. These composite hydrogels have potential in PNI regeneration applications.
more »
« less
- PAR ID:
- 10644777
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- ACS Biomaterials Science & Engineering
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2373-9878
- Page Range / eLocation ID:
- 5467 to 5481
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner. To test its robustness, microgels of multiple hydrogels and their combination, including alginate (Alg), gelatin methacrylate (GelMA) and Alg–GelMA, were formed at a maximum production rate of ∼65 000 microgels s −1 while retaining circularity and a size range of 50–500 µ m based on varying air pressure levels. The ACAD platform allowed single and multiple cell encapsulation with 74 ± 6% efficiency. These microgels illustrated appealing rheological properties such as yield stress, viscosity, and shear modulus for bioprinting applications. Specifically, Alg microgels have the potential to be used as a sacrificial support bath while GelMA microgels have potential for direct extrusion both on their own or when loaded in a bulk GelMA hydrogel. Generated microgels showed high cell viability (>90%) and proliferation of MDA-MB-231 and human dermal fibroblasts over seven days in both encapsulation and scaffolding applications, particularly for GelMA microgels. The developed strategy provides a facile and rapid approach without any complex or expensive consumables and accessories for scalable high-throughput microgel production for cell therapy, tissue regeneration and 3D bioprinting applications.more » « less
-
Generating stable and customizable topography on hydrogel surfaces with contact guidance potential is critical as it can direct/influence cell growth. This necessitates the development of new techniques for surface patterning of the hydrogels. We report on the design of a square grid template for surface patterning hydrogels. The template was 3-D printed and has the diameter of a well in a 24-well plate. Hyaluronic acid methacrylate (HA) hydrogel precursor solutions were cast on the 3D printed template’s surface, which generated 3D square shape topographies on the HA hydrogel surface upon demolding. The 3D Laser Microscopy has shown the formation of a periodic array of 3D topographies on hydrogel surfaces. 3D Laser and Electron Microscopy Imaging have revealed that this new method has increased the surface area and exposed the underlying pore structure of the HA hydrogels. To demonstrate the method’s versatility, we have successfully applied this technique to generate 3D topography on two more acrylate hydrogel formulations, gelatin Methacrylate and polyethylene glycol dimethacrylate. Human neonatal dermal fibroblast cells were used as a model cell line to evaluate the cell guidance potential of patterned HA hydrogel. Confocal fluorescence microscopy imaging has revealed that the 3D surface topographies on HA hydrogels can guide and align the actin filaments of the fibroblasts presumably due to the contact guidance mechanism. The newly developed methodology of 3D topography generation in acrylate hydrogels may influence the cell responses on hydrogel surfaces which can impact biomedical applications such as tissue engineering, wound healing, and disease modeling.more » « less
-
Abstract The convergence of nanotechnology and bioprinting is redefining the landscape of tissue engineering, with nanocomposite gelatin methacryloyl (GelMA) bioinks emerging as a transformative platform for the biofabrication of multifunctional tissue‐specific constructs. GelMA, a photocrosslinkable hydrogel, has rapidly gained attention due to its intrinsic bioactivity, tunable mechanical properties, and compatibility with living cells. However, despite its wide applicability regenerating muscle, cartilage, bone, vascular, cardiac, and neural tissues, native GelMA suffers from limited mechanical strength and insufficient biofunctionality to recapitulate the complexity of specialized tissues. To overcome these shortcomings, recent strategies have focused on the incorporation of nanomaterials into GelMA matrices, ranging from inorganic and carbon‐based to metallic, polymeric, and lipidic nanomaterials. These nanocomposite bioprinted scaffolds impart critical enhancements, including improved mechanical robustness, electrical conductivity, stimuli‐responsiveness, and bioactivity, while also enabling advanced functionalities such as controlled drug release and real‐time responsiveness to the cellular microenvironment. This review examines the bioprinting parameters, material synergies, and design strategies governing the performance of nanocomposite GelMA bioinks. By integrating the tunability of photocrosslinkable bioinks with the multifunctionality of nanomaterials, nanocomposite GelMA bioinks represent a next‐generation platform capable of addressing the complex demands of tissue repair and regeneration.more » « less
-
The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.more » « less
An official website of the United States government

