skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 18, 2026

Title: Uniqueness of the 2D Euler equation on rough domains
We consider the 2D incompressible Euler equation on a bounded simply connected domain\Omega. We give sufficient conditions on the domain\Omegaso that for any initial vorticity\omega_{0} \in L^{\infty}(\Omega), the weak solutions are unique. Our sufficient condition is slightly more general than the condition that\Omegais aC^{1,\alpha}domain for some\alpha>0, with its boundary belonging toH^{3/2}(\mathbb{S}^{1}). As a corollary, we prove uniqueness forC^{1,\alpha}domains for\alpha >1/2and for convex domains which are alsoC^{1,\alpha}domains for some\alpha >0. Previously, uniqueness for general initial vorticity inL^{\infty}(\Omega)was only known forC^{1,1}domains with possibly a finite number of acute angled corners. The fundamental barrier to proving uniqueness below theC^{1,1}regularity is the fact that for less regular domains, the velocity near the boundary is no longer log-Lipschitz. We overcome this barrier by defining a new change of variable which we then use to define a novel energy functional.  more » « less
Award ID(s):
2052740 2101381
PAR ID:
10644873
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Journal of the European Mathematical Society
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that if a parabolic Lipschitz (i.e., Lip(1,1/2)) graph domain has the property that its caloric measure is parabolic$$A_{\infty }$$ A with respect to surface measure (which property is in turn equivalent to$$\mathrm{L}^{p}$$ L p solvability of the Dirichlet problem for some finite$$p$$ p ), then the function defining the graph has a half-order time derivative in the space of (parabolic) bounded mean oscillation. Equivalently, we prove that the$$A_{\infty }$$ A property of caloric measure implies, in this case, that the boundary is parabolic uniformly rectifiable. Consequently, by combining our result with the work of Lewis and Murray we resolve a long standing open problem in the field by characterizing those parabolic Lipschitz graph domains for which one has$$\mathrm{L}^{p}$$ L p solvability (for some$$p <\infty $$ p < ) of the Dirichlet problem for the heat equation. The key idea of our proof is to view the level sets of the Green function as extensions of the original boundary graph for which we can prove (local) square function estimates of Littlewood-Paley type. 
    more » « less
  2. Abstract Given integers$$n> k > 0$$ n > k > 0 , and a set of integers$$L \subset [0, k-1]$$ L [ 0 , k - 1 ] , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ F [ n ] k such that$$|F \cap F'| \in L$$ | F F | L for distinct$$F, F'\in \mathcal {F}$$ F , F F .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ ϑ ( G ) is a semidefinite programming approximation of the independence number$$\alpha $$ α of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ ϑ ( G ( n , k , L ) ) of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ n . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ ϵ > 0 , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / c ( G ) = Ω ( n 1 - ϵ ) , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / α ( G ) = Ω ( n 1 - ϵ ) , which greatly improves on the best known explicit construction. 
    more » « less
  3. We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $$\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $$\end{document}, which, moreover, in the canonical case \begin{document}$$ \gamma = 0 $$\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$$ \gamma = 0 $$\end{document} or \begin{document}$$ 0 \neq \gamma \in L^{\infty}(\Omega) $$\end{document}, since \begin{document}$$ \gamma \neq 0 $$\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$$ g $$\end{document} "smoother" than \begin{document}$$ L^2(\Sigma) $$\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$$ L^2(0, T;L^2(\Gamma)) $$\end{document}, and [44] for control less regular in space than \begin{document}$$ L^2(\Gamma) $$\end{document}$. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2]. 
    more » « less
  4. Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains. 
    more » « less
  5. Abstract We consider the three-dimensional Euler equations in a domain with a free boundary with no surface tension. We assume that u 0 H 2.5 + δ is such that c u r l u 0 H 2 + δ in an arbitrarily small neighborhood of the free boundary, and we use the Lagrangian approach to derive an a priori estimate that can be used to prove local-in-time existence and uniqueness of solutions under the Rayleigh–Taylor stability condition. 
    more » « less