Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is ofLie–Poisson type. In parallel, it is classical that the Vlasov equation is amean-field limitfor a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.more » « less
-
We consider the 2D incompressible Euler equation on a bounded simply connected domain\Omega. We give sufficient conditions on the domain\Omegaso that for any initial vorticity\omega_{0} \in L^{\infty}(\Omega), the weak solutions are unique. Our sufficient condition is slightly more general than the condition that\Omegais aC^{1,\alpha}domain for some\alpha>0, with its boundary belonging toH^{3/2}(\mathbb{S}^{1}). As a corollary, we prove uniqueness forC^{1,\alpha}domains for\alpha >1/2and for convex domains which are alsoC^{1,\alpha}domains for some\alpha >0. Previously, uniqueness for general initial vorticity inL^{\infty}(\Omega)was only known forC^{1,1}domains with possibly a finite number of acute angled corners. The fundamental barrier to proving uniqueness below theC^{1,1}regularity is the fact that for less regular domains, the velocity near the boundary is no longer log-Lipschitz. We overcome this barrier by defining a new change of variable which we then use to define a novel energy functional.more » « lessFree, publicly-accessible full text available July 18, 2026
An official website of the United States government

Full Text Available