Abstract 0D organic metal halide hybrids (OMHHs) have recently emerged as a new generation of scintillation materials, due to their high luminescence quantum efficiency, sensitivity, stability, and cost‐effectiveness. While numerous 0D OMHH scintillators have been developed to date, most of them are based on solution grown single crystals that require time‐consuming synthesis and are limited in size. Here, high‐performance X‐ray scintillators based on facile solution processed 0D OMHH amorphous films are reported for the first time. By reacting triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium bromide (TPPcarzBr) with manganese bromide (MnBr2), 0D (TPPcarz)₂MnBr₄ amorphous films can be prepared via solution processing with mild thermal annealing, which exhibits green photoluminescence with an emission maximum ≈517 nm and a photoluminescence quantum efficiency of ≈87%. The X‐ray scintillation of 0D (TPPcarz)₂MnBr₄ amorphous films is characterized to exhibit a light yield of 44600 photon MeV−1and an outstanding linearity with a low limit of detection of 32.42 nGyairs−1over a wide range of X‐ray dose rates. The versatile processability of 0D (TPPcarz)₂MnBr₄ is illustrated with remarkable recyclability, high cost‐effectiveness, and scalability for large‐scale production. By taking advantage of the amorphous nature of newly designed OMHHs, the approach opens up new opportunities for developing high‐performance, solution‐processable scintillators.
more »
« less
Solution‐Processed Amorphous Zero‐Dimensional Organic Metal Halide Hybrid Films for Direct X‐Ray Detectors
Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) are emerging materials with significant potential for optoelectronic applications, including direct X‐ray detectors. While 0D OMHH single crystals exhibit excellent X‐ray detection properties, their scalability remains a significant challenge due to the time‐intensive growth process and difficulty in producing large single crystals exceeding a few centimeters. This limitation hinders their practicality for large‐area detector applications. Here, we report for the first time the development of amorphous 0D OMHH films via solution processing for efficient direct X‐ray detection. By reacting a non‐crystalline organic halide, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl)phosphonium bromide (TPPCarzBr), with zinc bromide (ZnBr2), we have successfully produced amorphous 0D (TPPCarz)2ZnBr4films with controlled thickness via facile solution processing. The organic cations (TPPCarz⁺) feature a lower bandgap than the ZnBr42−anions, enabling efficient molecular sensitization, where ZnBr42−anions serve as X‐ray absorbers and TPPCarz⁺ cations as charge transporters. Direct X‐ray detectors based on 0D (TPPCarz)2ZnBr4films demonstrate outstanding performance, achieving a stable X‐ray detection sensitivity of 2,165 µC Gyair⁻1cm⁻2at 20 V mm⁻¹ and a detection limit of 6.01 nGyair s⁻¹. The amorphous nature of these films enhances their processability, allowing for fabrication in various sizes and shapes, and making them highly adaptable for scalable detector applications.
more »
« less
- Award ID(s):
- 2204466
- PAR ID:
- 10644889
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 35
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal halide perovskites and perovskite‐related organic metal halide hybrids (OMHHs) have recently emerged as a new class of luminescent materials for light emitting diodes (LEDs), owing to their unique and remarkable properties, including near‐unity photoluminescence quantum efficiencies, highly tunable emission colors, and low temperature solution processing. While substantial progress has been made in developing monochromatic LEDs with electroluminescence across blue, green, red, and near‐infrared regions, achieving highly efficient and stable white electroluminescence from a single LED remains a challenging and under‐explored area. Here, a facile approach to generating white electroluminescence is reported by combining narrow sky‐blue emission from metal halide perovskites and broadband orange/red emission from zero‐dimensional (0D) OMHHs. For the proof of concept, utilizing TPPcarz+passivated two‐dimensional (2D) CsPbBr3nanoplatelets (NPLs) as sky blue emitter and 0D TPPcarzSbBr4as orange/red emitter (TPPcarz+= triphenyl (9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium), white LEDs (WLEDs) with a solution processed bilayer structure have been fabricated to exhibit a peak external quantum efficiency (EQE) of 4.8% and luminance of 1507 cd m−2at the Commission Internationale de L'Eclairage (CIE) coordinate of (0.32, 0.35). This work opens a new pathway for creating highly efficient and stable WLEDs using metal halide perovskites and related materials.more » « less
-
Abstract Rational design of chiral two‐dimensional hybrid organic–inorganic perovskites is crucial to achieve chiroptoelecronic, spintronic, and ferroelectric applications. Here, an efficient way to manipulate the chiroptoelectronic activity of 2D lead iodide perovskites is reported by forming mixed chiral (R‐ or S‐methylbenzylammonium (R‐MBA+or S‐MBA+)) and achiral (n‐butylammonium (nBA+)) cations in the organic layer. The strongest and flipped circular dichroism signals are observed in (R/S‐MBA0.5nBA0.5)2PbI4films compared to (R/S‐MBA)2PbI4. Moreover, the (R/S‐MBA0.5nBA0.5)2PbI4films exhibit pseudo‐symmetric, unchanged circularly polarized photoluminescence peak as temperature increases. First‐principles calculations reveal that mixed chiral–achiral cations enhance the asymmetric hydrogen‐bonding interaction between the organic and inorganic layers, causing more structural distortion, thus, larger spin‐polarized band‐splitting than pure chiral cations. Temperature‐dependent powder X‐ray diffraction and pair distribution function structure studies show the compressed intralayer lattice with enlarged interlayer spacing and increased local ordering. Overall, this work demonstrates a new method to tune chiral and chiroptoelectronic properties and reveals their atomic scale structural origins.more » « less
-
Abstract Over the past decade, lead halide perovskites have gained significant interest for ionizing radiation detection, owing to their exceptional performance, and cost-effective fabrication in a wide range of form factors, from thick films to large single crystals. However, the toxicity of lead, limited environmental and thermal stability of these materials, as well as dark current drift due to ionic conductivity, have prompted the development of alternative materials that can address these challenges. Bismuth-based compounds (including perovskite derivatives and nonperovskite materials) have similarly high atomic numbers, leading to strong X-ray attenuation, but have lower toxicity, tend to be more environmentally stable, and can have lower ionic conductivity, especially in low-dimensional materials. These materials are also advantageous over commercial direct X-ray detectors by being able to detect lower dose rates of X-rays than amorphous selenium by at least two orders of magnitude, are potentially more cost-effective to mass produce than cadmium zinc telluride, and can operate at room temperature (unlike high-purity Ge). Given the strong interest in this area, we here discuss recent advances in the development of bismuth-based perovskite derivatives (with 3D, 2D and 0D structural dimensionality), and other bismuth-based perovskite-inspired materials for direct X-ray detection. We discuss the critical properties of these materials that underpin the strong performances achieved, particularly the ability to detect low-dose rates of X-rays. We cover key strategies for enhancing the performance of these materials, as well as the challenges that need to be overcome to commercialize these emerging technologies. Graphical abstractmore » « less
-
Abstract Highly sensitive stimuli‐responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero‐dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3−polyanions, respectively, separated by TEP+(tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4and (TEP)2Cu4Br6demonstrate greenish‐white and orange‐red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9is a poor light emitter. Optical spectroscopy measurements and density‐functional theory calculations reveal that photoemissions of these compounds originate from self‐trapped excitons due to the excited‐state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X‐ and γ‐rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ‐rays of137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4and (TEP)2Cu4Br6are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on‐off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4and (TEP)2Cu4Br6to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid‐state lighting, sensing, information storage, and anticounterfeiting.more » « less
An official website of the United States government

