Abstract An anionic Rh−Ga complex catalyzed the hydrodefluorination of challenging C−F bonds in electron‐rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2, a stoichiometric alkoxide base, and a crown‐ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh−Ga complex for photoinduced single‐electron transfer (SET). Stoichiometric and control reactions support that the C−F activation is mediated by the excited anionic Rh−Ga complex. After SET, the proposed neutral Rh0intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium‐labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen‐atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C−F bonds and uses H2and base as the terminal reductant.
more »
« less
This content will become publicly available on October 15, 2026
Pd-catalyzed desulfonylative fluorination of electron-deficient (hetero)aryl sulfonyl fluorides
Pd catalysis is used to convert electron-deficient (hetero)aryl sulfonyl fluorides to the corresponding (hetero)aryl fluorides with extrusion of SO2.
more »
« less
- Award ID(s):
- 2202693
- PAR ID:
- 10645100
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 16
- Issue:
- 40
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 18936 to 18941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Herein we disclosed an unprecedented photochemically driven nickel‐catalyzed carboxylative Buchwald–Hartwig amination to access a wide range of aryl carbamate derivatives. This reaction is performed under mild condition of temperature and atmospheric pressure of CO2 starting from commercially available (hetero)aryl iodides/bromides derivatives and alkyl amines preventing the formation of hazardous and/or toxic waste. Moreover, preliminary mechanistic investigations including stochiometric experiments as well as DFT calculations allow us to shed light on the reaction mechanism.more » « less
-
Aryl chlorides (ArCl) or aryl fluorides (ArF) were used in polycondensation reactions to form poly(arylene ether sulfone)s (PAES). Interestingly, the kinetics of the ArF reaction fit a third-order rate law, which is attributed to the activation of the carbon–fluorine bond by two potassium cations (at least one bound to phenolate), which form a three-body complex. The ArCl monomer follows a second-order rate law, where a two-body complex forms at the initial state of the aromatic nucleophilic substitution (S N Ar) pathway. These metal cation-activated complexes act as intermediates during the attack by the nucleophile. This finding was reproduced with either the potassium or the sodium counterion (introduced via potassium carbonate or sodium carbonate). Through a combination of experimental analysis of reaction kinetics and computational calculations with density functional theory (DFT) methods, the present work extends the fundamental understanding of polycondensation mechanisms for two aryl halides and highlights the importance of the CX–metal interaction(s) in the S N Ar reaction, which is translational to other ion-activated substitution reactions.more » « less
An official website of the United States government
