skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 27, 2025

Title: Transcriptomic resources for Bagrada hilaris (Burmeister), a widespread invasive pest of Brassicales
The bagrada bug,Bagrada hilaris(Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishesB.hilaristranscriptomic resources for eggs, 2ndand 4thlarval instars, as well as male and female adults. Three gene families involved in xenobiotic detoxification—glutathione S-transferases, carboxylesterases and cytochrome P450 monooxygenases—were phylogenetically characterized. These data were also qualitatively compared with previously published results for two closely related pentatomid species—the brown marmorated stink bug,Halyomorpha halys(Stål), and the harlequin bug,Murgantia histrionica(Hahn)—to elucidate shared enzymatic components of terpene-based sex pheromone biosynthetic pathways. Lastly, the sequence data were screened for potential RNAi- and virus-related content and for genes implicated in insect growth and development.  more » « less
Award ID(s):
1920925
PAR ID:
10645166
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Lou, Yonggen
Publisher / Repository:
Plos One
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0310186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Irfan, Mohammad (Ed.)
    Drought is a significant environmental stressor that severely impairs plant growth and agricultural productivity. Unraveling the molecular mechanisms underlying plant responses to drought is crucial for developing crops with enhanced resilience. In this study, we investigated the transcriptomic responses of cultivated tomato (Solanum lycopersicum) and its drought-tolerant wild relative,Solanum pennellii, to identify “stress-ready” gene expression patterns associated with pre-adaptation to arid environments. Through RNA-seq analysis, we identified orthologous genes between the two species and compared their transcriptomic profiles under both control and drought conditions. Approximately 43% of the orthologous genes exhibited species-specific expression patterns, while nearly 20% were classified as stress-ready. These stress-ready genes were significantly enriched for functions related to nucleosome assembly, RNA metabolism, and transcriptional regulation. Furthermore, transcription factor binding motif analysis revealed a marked enrichment of ERF family motifs, emphasizing their role in both stress-ready and species-specific responses. Our findings indicate that regulatory mechanisms, particularly those mediated by ERF transcription factors, are pivotal to the drought resilience ofS. pennellii, providing a foundation for future crop improvement strategies. 
    more » « less
  2. Abstract Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species. Among 43,301 ITRs across the four species, 34,460 (80%) are species-specific. ITRs found across species tend to be more divergent in expression and have more recent duplicates compared to annotated genes. To assess if ITRs are functional (under selection), machine learning models were established inOryza sativa(rice) that could accurately distinguish between phenotype genes and pseudogenes (area under curve-receiver operating characteristic = 0.94). Based on the models, 584 (8%) and 4391 (61%) rice ITRs are classified as likely functional and nonfunctional with high confidence, respectively. ITRs with conserved expression and ancient retained duplicates, features that were not part of the model, are frequently classified as likely-functional, suggesting these characteristics could serve as pragmatic rules of thumb for identifying candidate sequences likely to be under selection. This study also provides a framework to identify novel genes using comparative transcriptomic data to improve genome annotation that is fundamental for connecting genotype to phenotype in crop and model systems. 
    more » « less
  3. Abstract The angiosperm genus Silene is a model system for several traits of ecological and evolutionary significance in plants, including breeding system and sex chromosome evolution, host-pathogen interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. Despite its importance, genomic resources for this large genus of approximately 850 species are scarce, with only one published whole-genome sequence (from the dioecious species Silene latifolia). Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, single-molecule sequencing technology to analyze full-length mRNA transcripts. Using these data, we have assembled and annotated high-quality full-length cDNA sequences for approximately 14,126 S. noctiflora genes and 25,317 isoforms. We demonstrated the utility of these data to distinguish between recent and highly similar gene duplicates by identifying novel paralogous genes in an essential protease complex. Furthermore, we provide a draft assembly for the approximately 2.7-Gb genome of this species, which is near the upper range of genome-size values reported for diploids in this genus and threefold larger than the 0.9-Gb genome of Silene conica, another species in the same subgenus. Karyotyping confirmed that S. noctiflora is a diploid, indicating that its large genome size is not due to polyploidization. These resources should facilitate further study and development of this genus as a model in plant ecology and evolution. 
    more » « less
  4. Summary Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short‐ or longer‐term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding‐triggered Ca2+signaling.We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+‐related transcripts. We then focused on transporters likely to modulate Ca2+signals. Candidates emerging from this analysis includedAUTOINHIBITED Ca2+ATPASE 1andCATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding‐related Ca2+changes.Knockout mutants inCAX2especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others.CAX2mutants also generated larger and more sustained Ca2+signals in response to both flooding and hypoxic challenges.CAX2 is a Ca2+transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+transport in the signaling systems that trigger flooding response. 
    more » « less
  5. Abstract The number of plant species with genomic and transcriptomic data has been increasing rapidly. The grasses—Poaceae—have been well represented among species with published reference genomes. However, as a result the genomes of wild grasses are less frequently targeted by sequencing efforts. Sequence data from wild relatives of crop species in the grasses can aid the study of domestication, gene discovery for breeding and crop improvement, and improve our understanding of the evolution of C4photosynthesis. Here, we used long‐read sequencing technology to characterize the transcriptomes of three C3panicoid grass species:Dichanthelium oligosanthes,Chasmanthium laxum, andHymenachne amplexicaulis. Based on alignments to the sorghum genome, we estimate that assembled consensus transcripts from each species capture between 54.2% and 65.7% of the conserved syntenic gene space in grasses. Genes co‐opted into C4were also well represented in this dataset, despite concerns that because these genes might play roles unrelated to photosynthesis in the target species, they would be expressed at low levels and missed by transcript‐based sequencing. A combined analysis using syntenic orthologous genes from grasses with published reference genomes and consensus long‐read sequences from these wild species was consistent with previously published phylogenies. It is hoped that these data, targeting underrepresented classes of species within the PACMAD grasses—wild species and species utilizing C3photosynthesis—will aid in future studies of domestication and C4evolution by decreasing the evolutionary distance between C4and C3species within this clade, enabling more accurate comparisons associated with evolution of the C4pathway. 
    more » « less