skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Host species and geographic location shape microbial diversity and functional potential in the conifer needle microbiome
Abstract BackgroundThe aerial surface of plants, known as the phyllosphere, hosts a complex and dynamic microbiome that plays essential roles in plant health and environmental processes. While research has focused on root-associated microbiomes, the phyllosphere remains comparatively understudied, especially in forest ecosystems. Despite the global ecological dominance and importance of conifers, no previous study has applied shotgun metagenomics to their phyllosphere microbiomes. ResultsThis study uses metagenomic sequencing to explore the microbial phyllosphere communities of subalpine Western conifer needle surfaces from 67 trees at six sites spanning the Rocky Mountains, including 31 limber pine, 18 Douglas fir, and 18 Engelmann spruce. Sites span ~ 1,075 km and nearly 10° latitude, from Glacier National Park to Rocky Mountain Biological Laboratory, capturing broad environmental variation. Metagenomes were generated for each of the 67 samples, for which we produced individual assemblies, along with three large coassemblies specific to each conifer host. From these datasets, we reconstructed 447 metagenome-assembled genomes (MAGs), 417 of which are non-redundant at the species level. Beyond increasing the total number of extracted MAGs from 153 to 294, the three coassemblies yielded three large MAGs, representing partial sequences of host genomes. Phylogenomics of all microbial MAGs revealed communities predominantly composed of bacteria (n = 327) and fungi (n = 117). We show that both microbial community composition and metabolic potential differ significantly across host tree species and geographic sites, with site exerting a stronger influence than host. ConclusionsThis dataset offers new insights into the microbial communities inhabiting the conifer needle surface, laying the foundation for future research on needle microbiomes across temporal and spatial scales. Variation in functional capabilities, such as volatile organic compound (VOC) degradation and polysaccharide metabolism, closely tracks shifts in taxonomic composition, indicating that host-specific chemistry, local environmental factors, and regional microbial source pools jointly shape ecological roles. Moreover, the observed patterns of mobile genetic elements and horizontal gene transfer suggest that gene exchange predominantly occurs within microbial lineages, with occasional broader transfers dispersing key functional genes (e.g., those involved in polysaccharide metabolism), which may facilitate microbiome adaptation.  more » « less
Award ID(s):
1442348
PAR ID:
10645178
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Microbiome
Volume:
13
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hom, Erik F. (Ed.)
    ABSTRACT Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet’s whelk (Kelletia kelletii) perivitelline fluid (PVF), which sustains thousands of developingK. kelletiiembryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with theRoseobactergenus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet’s whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome’s role in Kellet’s whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.IMPORTANCEThis study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet’s whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet’s whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes. 
    more » « less
  2. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution. 
    more » « less
  3. Abstract Plant microbiomes depend on environmental conditions, stochasticity, host species, and genotype identity. Eelgrass (Zostera marina)is a unique system for plant–microbe interactions as a marine angiosperm growing in a physiologically-challenging environment with anoxic sediment, periodic exposure to air at low tide, and fluctuations in water clarity and flow. We tested the influence of host origin versus environment on eelgrass microbiome composition by transplanting 768 plants among four sites within Bodega Harbor, CA. Over three months following transplantation, we sampled microbial communities monthly on leaves and roots and sequenced the V4–V5 region of the 16S rRNA gene to assess community composition. The main driver of leaf and root microbiome composition was destination site; more modest effects of host origin site did not last longer than one month. Community phylogenetic analyses suggested that environmental filtering structures these communities, but the strength and nature of this filtering varies among sites and over time and roots and leaves show opposing gradients in clustering along a temperature gradient. We demonstrate that local environmental differences create rapid shifts in associated microbial community composition with potential functional implications for rapid host acclimation under shifting environmental conditions. 
    more » « less
  4. Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome. 
    more » « less
  5. Martiny, Jennifer_B H (Ed.)
    Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential ofKyphosusgastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae throughin silicostudy of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously describedKyphosusgut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa inKyphosusguts. The most versatile of the recovered MAGs were from theBacteroidotaphylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from theBacillota(genusVallitalea) andVerrucomicrobiota(orderKiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level amongKyphosussymbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genusKyphosusfeed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identifyKyphosusguts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides. 
    more » « less