World-scale augmented reality (AR) applications need a ubiquitous 6DoF localization backend to anchor content to the real world consistently across devices. Large organizations such as Google and Niantic are 3D scanning outdoor public spaces in order to build their own Visual Positioning Systems (VPS). These centralized VPS solutions fail to meet the needs of many future AR applications---they do not cover private indoor spaces because of privacy concerns, regulations, and the labor bottleneck of updating and maintaining 3D scans. In this paper, we present OpenFLAME a federated VPS backend that allows independent organizations to 3D scan and maintain a separate VPS service for their own spaces. This enables access control of indoor 3D scans, distributed maintenance of the VPS backend, and encourages larger coverage. Sharding of VPS services introduces several unique challenges---coherency of localization results across spaces, quality control of VPS services, selection of the right VPS service for a location, and many others. We introduce the concept of federated image-based localization and provide reference solutions for managing and merging data across maps without sharing private data.
more »
« less
This content will become publicly available on May 14, 2026
Uniting the World by Dividing it: Federated Maps to Enable Spatial Applications
The emergence of the Spatial Web -- the Web where content is tied to real-world locations has the potential to improve and enable many applications such as augmented reality, navigation, robotics, and more. The Spatial Web is missing a key ingredient that is impeding its growth -- a spatial naming system to resolve real-world locations to names. Today's spatial naming systems are digital maps such as Google and Apple maps. These maps and the location-based services provided on top of these maps are primarily controlled by a few large corporations and mostly cover outdoor public spaces. Emerging classes of applications, such as persistent world-scale augmented reality, require detailed maps of both outdoor and indoor spaces. Existing centralized mapping infrastructures are proving insufficient for such applications because of the scale of cartography efforts required and the privacy of indoor map data.In this paper, we present a case for a federated spatial naming system, or in other words, a federated mapping infrastructure. This enables disparate parties to manage and serve their own maps of physical regions and unlocks scalability of map management, isolation and privacy of maps. Map-related services such as address-to-location mapping, location-based search, and routing needs re-architecting to work on federated maps. We discuss some essential services and practicalities of enabling these services.
more »
« less
- Award ID(s):
- 1956095
- PAR ID:
- 10645298
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 74 to 79
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There are a wide variety of mobile phone emergency response applications exist for both indoor and outdoor environments. However, outdoor applications mostly provide accident and navigation information to users, and indoor applications are limited to the unavailability of GPS positioning and WiFi access problems. This paper describes the proposed mobile augmented reality system (MARS) that allows both outdoor and indoor users to retrieve and manage information for emergency response and navigation that is spatially registered with the real world. The proposed MARS utilizes feature extraction for location sensing in indoor environments as during emergencies GPS and WiFi systems might not work. This paper describes the implementation of this MARS deployed on tablets and smartphones for building evacuation purposes. The MARS delivers critical evacuation information to smartphone users in the indoor environment and navigation information in the outdoor environments. A limited user study was conducted to test the effectiveness of the proposed MARS using the mobile phone usability questionnaire (MPUQ) framework. The results show that AR features were well integrated into the MARS and it will help identify the nearest exit in the building during the emergency evacuation.more » « less
-
Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework calledFedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy.FedHILintegrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show thatFedHILoutperforms state-of-the-art FL and non-FL indoor localization frameworks.FedHILis able to achieve 1.62 × better localization accuracy on average than the best performing FL-based indoor localization framework from prior work.more » « less
-
Indoor navigation in complex building environments poses significant challenges, particularly for individuals who are unfamiliar with their surroundings. Mixed reality (MR) technologies have emerged as a promising solution to enhance situational awareness and facilitate navigation within indoor spaces. However, there is a lack of spatial data for indoor environments, including outdated floor plans and limited real-time operational data. This paper presents the development of a mixed-reality application for indoor building navigation and evacuation. The application uses feature extraction for location sensing and situational awareness to provide accurate and reliable navigation in any indoor environment using Microsoft HoloLens. The application can track the user's position and orientation and give the user-specific information on how to evacuate the building. This information is then used to generate navigation instructions for the user. We demonstrate how this mixed reality HoloLens application can provide spatially contextualized 3D visualizations that promote spatial knowledge acquisition and situational awareness. These 3D visualizations are developed as an emergency evacuation and navigation tool to aid the building occupants in safe and quick evacuation. Experimental results demonstrate the effectiveness of the application, providing 3D visualizations of multilevel spaces and aiding individuals in understanding their position and evacuation path during emergencies. We believe that adopting mixed reality technologies, such as the HoloLens, can greatly enhance individuals' ability to navigate large-scale environments during emergencies by promoting spatial knowledge acquisition and supporting cognitive mapping.more » « less
-
Geo-obfuscation is a location privacy protection mechanism used by mobile users to conceal their precise locations when reporting location data, and it has been widely used to protect the location privacy of workers in spatial crowdsourcing (SC). However, this technique introduces inaccuracies in the reported locations, raising the question of how to control the quality loss that results from obfuscation in SC services. Prior studies have addressed this issue in time-insensitive SC settings, where some degree of quality degradation can be accepted and the locations can be expressed with less precision, which, however, is inadequate for time-sensitive SC. In this paper, we aim to minimize the quality loss caused by geo-obfuscation in time-sensitive SC applications. To this end, we model workers’ mobility on a fine-grained location field and constrain each worker’s obfuscation range to a set of peer locations, which have similar traveling costs to the destination as the actual location. We apply a linear programming (LP) framework to minimize the quality loss while satisfying both peer location constraints and geo-indistinguishability, a location privacy criterion extended from differential privacy. By leveraging the constraint features of the formulated LP, we enhance the time efficiency of solving LP through the geo-indistinguishability constraint reduction and the column generation algorithm. Using both simulation and real-world experiments, we demonstrate that our approach can reduce the quality loss of SC applications while protecting workers’ location privacy.more » « less
An official website of the United States government
