skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine-Grained Geo-Obfuscation to Protect Workers’ Location Privacy in Time-Sensitive Spatial Crowdsourcing
Geo-obfuscation is a location privacy protection mechanism used by mobile users to conceal their precise locations when reporting location data, and it has been widely used to protect the location privacy of workers in spatial crowdsourcing (SC). However, this technique introduces inaccuracies in the reported locations, raising the question of how to control the quality loss that results from obfuscation in SC services. Prior studies have addressed this issue in time-insensitive SC settings, where some degree of quality degradation can be accepted and the locations can be expressed with less precision, which, however, is inadequate for time-sensitive SC. In this paper, we aim to minimize the quality loss caused by geo-obfuscation in time-sensitive SC applications. To this end, we model workers’ mobility on a fine-grained location field and constrain each worker’s obfuscation range to a set of peer locations, which have similar traveling costs to the destination as the actual location. We apply a linear programming (LP) framework to minimize the quality loss while satisfying both peer location constraints and geo-indistinguishability, a location privacy criterion extended from differential privacy. By leveraging the constraint features of the formulated LP, we enhance the time efficiency of solving LP through the geo-indistinguishability constraint reduction and the column generation algorithm. Using both simulation and real-world experiments, we demonstrate that our approach can reduce the quality loss of SC applications while protecting workers’ location privacy.  more » « less
Award ID(s):
2136948 2313866
PAR ID:
10558223
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
OpenProceedings.org
Date Published:
Subject(s) / Keyword(s):
Database Technology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geo-obfuscation serves as a location privacy protection mechanism (LPPM), enabling mobile users to share obfuscated locations with servers, rather than their exact locations. This method can protect users’ location privacy when data breaches occur on the server side since the obfuscation process is irreversible. To reduce the utility loss caused by data obfuscation, linear programming (LP) is widely employed, which, however, might suffer from a polynomial explosion of decision variables, rendering it impractical in largescale geo-obfuscation applications. In this paper, we propose a new LPPM, called Locally Relevant Geo-obfuscation (LR-Geo), to optimize geo-obfuscation using LP in a time-efficient manner. This is achieved by confining the geoobfuscation calculation for each user exclusively to the locally relevant (LR) locations to the user’s actual location. Given the potential risk of LR locations disclosing a user’s actual whereabouts, we enable users to compute the LP coefficients locally and upload them only to the server, rather than the LR locations. The server then solves the LP problem based on the received coefficients. Furthermore, we refine the LP framework by incorporating an exponential obfuscation mechanism to guarantee the indistinguishability of obfuscation distribution across multiple users. Based on the constraint structure of the LP formulation, we apply Benders’ decomposition to further enhance computational efficiency. Our theoretical analysis confirms that, despite the geo-obfuscation being calculated independently for each user, it still meets geo-indistinguishability constraints across multiple users with high probability. Finally, the experimental results based on a real-world dataset demonstrate that LR-Geo outperforms existing geo-obfuscation methods in computational time, data utility, and privacy preservation. 
    more » « less
  2. Vincent Poor and Zhu Han (Ed.)
    Recently, blockchain has received much attention from the mobility-centric Internet of Things (IoT). It is deemed the key to ensuring the built-in integrity of information and security of immutability by design in the peer-to-peer network (P2P) of mobile devices. In a permissioned blockchain, the authority of the system has control over the identities of its users. Such information can allow an ill-intentioned authority to map identities with their spatiotemporal data, which undermines the location privacy of a mobile user. In this paper, we study the location privacy preservation problem in the context of permissioned blockchain-based IoT systems under three conditions. First, the authority of the blockchain holds the public and private key distribution task in the system. Second, there exists a spatiotemporal correlation between consecutive location-based transactions. Third, users communicate with each other through short-range communication technologies such that it constitutes a proof of location (PoL) on their actual locations. We show that, in a permissioned blockchain with an authority and a presence of a PoL, existing approaches cannot be applied using a plug-and-play approach to protect location privacy. In this context, we propose BlockPriv, an obfuscation technique that quantifies, both theoretically and experimentally, the relationship between privacy and utility in order to dynamically protect the privacy of sensitive locations in the permissioned blockchain. 
    more » « less
  3. The rapid growth of GPS technology and mobile devices has led to a massive accumulation of location data, bringing considerable benefits to individuals and society. One of the major usages of such data is travel time prediction, a typical service provided by GPS navigation devices and apps. Meanwhile, the constant collection and analysis of the individual location data also pose unprecedented privacy threats. We leverage the notion of geo-indistinguishability, an extension of differential privacy to the location privacy setting, and propose a procedure for privacy-preserving travel time prediction without collecting actual individual GPS trace data. We propose new concepts to examine the impact of the geo-indistinguishability sanitization on the usefulness of GPS traces and provide analytical and experimental utility analysis for privacy-preserving travel time prediction. We also propose new metrics to measure the adversary error in learning individual GPS traces from the collected sanitized data. Our experiment results suggest that the proposed procedure provides travel time analysis with satisfactory accuracy at reasonably small privacy costs. 
    more » « less
  4. In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases. 
    more » « less
  5. One of the most popular location privacy-preserving mechanisms applied in location-based services (LBS) is location obfuscation, where mobile users are allowed to report obfuscated locations instead of their real locations to services. Many existing obfuscation approaches consider mobile users that can move freely over a region. However, this is inadequate for protecting the location privacy of vehicles, as their mobility is restricted by external factors, such as road networks and traffic flows. This auxiliary information about external factors helps an attacker to shrink the search range of vehicles' locations, increasing the risk of location exposure. In this paper, we propose a vehicle traffic flow aware attack that leverages public traffic flow information to recover a vehicle's real location from obfuscated location. As a countermeasure, we then develop an adaptive strategy to obfuscate a vehicle's location by a "fake" trajectory that follows a realistic traffic flow. The fake trajectory is designed to not only hide the vehicle's real location but also guarantee the quality of service (QoS) of LBS. Our experimental results demonstrate that 1) the new threat model can accurately track vehicles' real locations, which have been obfuscated by two state-of-the-art algorithms, and 2) the proposed obfuscation method can effectively protect vehicles' location privacy under the new threat model without compromising QoS. 
    more » « less