Abstract. We use a recent reconstruction of global mean sea surface temperature change relative to preindustrial (ΔGMSST) over the last 4.5 Myr together with independent proxy-based reconstructions of bottom water (ΔBWT) or deep-ocean (ΔDOT) temperatures to infer changes in mean ocean temperature (ΔMOT). Three independent lines of evidence show that the ratio of ΔMOT / ΔGMSST, which is a measure of ocean heat storage efficiency (HSE), increased from ∼ 0.5 to ∼ 1 during the Middle Pleistocene Transition (MPT, 1.5–0.9 Ma), indicating an increase in ocean heat uptake (OHU) at this time. The first line of evidence comes from global climate models; the second from proxy-based reconstructions of ΔBWT, ΔMOT, and ΔGMSST; and the third from decomposing a global mean benthic δ18O stack (δ18Ob) into its temperature (δ18OT) and seawater (δ18Osw) components. Regarding the latter, we also find that further corrections in benthic δ18O, probably due to some combination of a long-term diagenetic overprint and to the carbonate ion effect, are necessary to explain reconstructed Pliocene sea-level highstands inferred from δ18Osw. We develop a simple conceptual model that invokes an increase in OHU and HSE during the MPT in response to changes in deep-ocean circulation driven largely by surface forcing of the Southern Ocean. Our model accounts for heat uptake and temperature in the non-polar upper ocean (0–2000 m) that is mainly due to wind-driven ventilation, while changes in the deeper ocean (> 2000 m) in both polar and non-polar waters occur due to high-latitude deepwater formation. We propose that deepwater formation was substantially reduced prior to the MPT, effectively decreasing HSE. We attribute these changes in deepwater formation across the MPT to long-term cooling which caused a change starting ∼ 1.5 Ma from a highly stratified Southern Ocean due to warm SSTs and reduced sea-ice extent to a Southern Ocean which, due to colder SSTs and increased sea-ice extent, had a greater vertical exchange of water masses.
more »
« less
Enhanced ocean heat storage efficiency during the last deglaciation
Proxy reconstructions suggest that increasing global mean sea surface temperature (GMSST) during the last deglaciation was accompanied by a comparable or greater increase in global mean ocean temperature (GMOT), corresponding to a large heat storage efficiency (HSE; ∆GMOT/∆GMSST). An increased GMOT is commonly attributed to surface warming at sites of deepwater formation, but winter sea ice covered much of these source areas during the last deglaciation, which would imply an HSE much less than 1. Here, we use climate model simulations and proxy-based reconstructions of ocean temperature changes to show that an increased deglacial HSE is achieved by warming of intermediate-depth waters forced by mid-latitude surface warming in response to greenhouse gas and ice sheet forcing as well as by reduced Atlantic meridional overturning circulation associated with meltwater forcing. These results, which highlight the role of surface warming and oceanic circulation changes, have implications for our understanding of long-term ocean heat storage change.
more »
« less
- Award ID(s):
- 2103032
- PAR ID:
- 10645335
- Publisher / Repository:
- American Associate for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 38
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The global paleomonsoon concept predicts an antiphase response of monsoon rainfall in the Northern and Southern Hemispheres at timescales where there is asymmetric solar forcing and/or asymmetric hemispheric temperature changes. However, as different monsoon systems have different sensitivities to local, regional, and global forcing, rainfall response may vary regionally, particularly during large global climatic changes such as the last deglaciation where warming occurred in both hemispheres. Despite its role as a key Southern Hemisphere counterpart to the Arabian and Indian summer monsoons, the behavior of the summer monsoon in the Southern Hemisphere of the Indian Ocean during the last deglaciation is unknown. Therefore, we present a new high‐resolution, precisely dated, and replicated speleothem stable isotope record from Tsimanampesotse National Park in southwest Madagascar that covers the last deglaciation. We show that speleothem growth phases respond largely to movements of the Southern Hemisphere summer Hadley circulation (summer extent of the tropical rainbelt/mean Intertropical Convergence Zone location), with some contribution from sea surface temperature changes at key times, such as during the Bølling‐Allerød. In contrast, speleothem δ18Ο responds primarily to sea surface temperature, in particular the location of the deep atmospheric convection isotherm, while summer Hadley circulation changes take a secondary role. Separating the varying influences of temperature and atmospheric circulation in controlling southwest Madagascan rainfall is critical to understanding rainfall variability in both the past and the future.more » « less
-
Abstract Arctic warming under increased CO2peaks in winter, but is influenced by summer forcing via seasonal ocean heat storage. Yet changes in atmospheric heat transport into the Arctic have mainly been investigated in the annual mean or winter, with limited focus on other seasons. We investigate the full seasonal cycle of poleward heat transport modeled with increased CO2or with individually applied Arctic sea‐ice loss and global sea‐surface warming. We find that a winter reduction in dry heat transport is driven by Arctic sea‐ice loss and warming, while a summer increase in moist heat transport is driven by sub‐Arctic warming and moistening. Intermodel spread in Arctic warming controls spread in seasonal poleward heat transport. These seasonal changes and their intermodel spread are well‐captured by down‐gradient diffusive heat transport. While changes in moist and dry heat transport compensate in the annual‐mean, their opposite seasonality may support non‐compensating effects on Arctic warming.more » « less
-
Abstract Proxy‐based reconstructions suggest that equilibrium changes in global mean sea surface temperature (ΔGMSST) are nearly equivalent to changes in mean ocean temperature (ΔMOT) on glacial‐interglacial timescales over the past 900,000 years. However, the underlying mechanisms responsible for this relationship remain poorly understood. Here we use simulations from Paleoclimate Modeling Intercomparison Project Phase 3 and 4 (PMIP3/4) to investigate equilibrium ΔMOT and its linkage to sea surface temperature changes between the Last Glacial Maximum (LGM, ∼21,000 years ago) and pre‐Industrial. Results show that PMIP3/4 simulations generally underestimate proxy‐based ΔMOT. Regression analysis reveals that LGM MOT is strongly modulated by mid‐latitude SST cooling, with the Southern Ocean having a greater influence compared to other oceanic regions, thus helping explain why models with similar ΔGMSSTs exhibit significantly different ΔMOTs. Additionally, we find a strong relationship between simulated Antarctic sea‐ice coverage and Southern Ocean SST changes, with implications for constraining sea‐ice reconstructions.more » « less
-
Abstract North Pacific atmospheric and oceanic circulations are key missing pieces in our understanding of the reorganization of the global climate system since the Last Glacial Maximum. Here, using a basin‐wide compilation of planktic foraminiferal δ18O, we show that the North Pacific subpolar gyre extended ~3° further south during the Last Glacial Maximum, consistent with sea surface temperature and productivity proxy data. Climate models indicate that the expansion of the subpolar gyre was associated with a substantial gyre strengthening, and that these gyre circulation changes were driven by a southward shift of the midlatitude westerlies and increased wind stress from the polar easterlies. Using single‐forcing model runs, we show that these atmospheric circulation changes are a nonlinear response to ice sheet topography/albedo and CO2. Our reconstruction indicates that the gyre boundary (and thus westerly winds) began to migrate northward at ~16.5 ka, driving changes in ocean heat transport, biogeochemistry, and North American hydroclimate.more » « less
An official website of the United States government

