skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Enhanced Min-Sum Decoding of Quantum Codes with Iteration Dynamics Memory
In this paper, we propose a novel message-passing decoding approach that leverages the degeneracy of quantum low-density parity-check codes to enhance decoding performance, eliminating the need for serial scheduling or post-processing. Our focus is on two-block Calderbank-Shor-Steane (CSS) codes, which are composed of symmetric stabilizers that hinder the performance of conventional iterative decoders with uniform update rules. Specifically, our analysis shows that, under the isolation assumption, the min-sum decoder fails to converge when constant-weight errors are applied to symmetric stabilizers, as variable-to-check messages oscillate in every iteration. To address this, we introduce a decoding technique that exploits this oscillatory property by applying distinct update rules: variable nodes in one block utilize messages from previous iterations, while those in the other block are updated conventionally. Logical error-rate results demonstrate that the proposed decoder significantly outperforms the normalized min-sum decoder and achieves competitive performance with belief propagation enhanced by order-zero ordered statistics decoding, all while maintaining linear complexity in the code’s block length.  more » « less
Award ID(s):
2420424
PAR ID:
10645533
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 6
Subject(s) / Keyword(s):
QLDPC codes, min-sum decoding, parallel scheduling, degeneracy, symmetric stabilizers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding. 
    more » « less
  2. null (Ed.)
    This paper proposes a finite-precision decoding method for low-density parity-check (LDPC) codes that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. MIM-QBP decoders do not work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is used to facilitate a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast to MIM-QBP, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes. Simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance within 0.1 dB of floating point belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region. The RCQ decoder actually outperforms floating point BP and Min-Sum in the high SNR region were FER less than 10 −5 . This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the time-varying non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and optimal quantization on the symmetric binary-input memoryless additive white Gaussian noise channel show a mutual information loss of less than 10 −6 bits, which is negligible in practice. 
    more » « less
  3. The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding. 
    more » « less
  4. Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional Normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable node message in each iteration. Previous N-NMS efforts primarily investigated short block codes (N < 1000), because the number of N-NMS parameters required to be trained scales proportionately to the number of edges in the parity check matrix and the number of iterations. This imposes an impractical memory requirement for conventional tools such as Pytorch and Tensorflow to create the neural network and store gradients. This paper provides efficient methods of training the parameters of N-NMS decoders that support longer block lengths. Specifically, this paper introduces a family of Neural 2-dimensional Normalized (N-2D-NMS) decoders with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify a reduced parameter set, showing that the trained weights of N- NMS have a smaller value for the neurons corresponding to larger check/variable node degree. Further simulation results on a (3096,1032) Protograph-Based Raptor-Like (PBRL) code show that the N-2D-NMS decoder can achieve the same FER as N- NMS while also providing at least a 99.7% parameter reduction. Furthermore, the N-2D-NMS decoder for the (16200,7200) DVBS- 2 standard LDPC code shows a lower error floor than belief propagation. Finally, this paper proposes a hybrid decoder training structure that utilizes a neural network which combines a feedforward module with a recurrent module. The decoding performance and parameter reduction of the hybrid training depends on the length of recurrent module of the neural network. 
    more » « less
  5. null (Ed.)
    Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable message in each iteration. Previous N-NMS efforts have primarily investigated short-length block codes (N < 1000), because the number of N-NMS parameters to be trained is proportional to the number of edges in the parity check matrix and the number of iterations, which imposes am impractical memory requirement when Pytorch or Tensorflow is used for training. This paper provides efficient approaches to training parameters of N-NMS that support N-NMS for longer block lengths. Specifically, this paper introduces a family of neural 2-dimensional normalized (N-2D-NMS) decoders with with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify this approach, showing that the trained weights of N-NMS have a strong correlation to the check node degree, variable node degree, and iteration number. Further simulation results on the (3096,1032) protograph-based raptor-like (PBRL) code show that N-2D-NMS decoder can achieve the same FER as N-NMS with significantly fewer parameters required. The N-2D-NMS decoder for a (16200,7200) DVBS-2 standard LDPC code shows a lower error floor than belief propagation. Finally, a hybrid decoding structure combining a feedforward structure with a recurrent structure is proposed in this paper. The hybrid structure shows similar decoding performance to full feedforward structure, but requires significantly fewer parameters. 
    more » « less