skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Optimal and Incentive-compatible Scheduling of Flexible Generation in an Electricity Market
There is a growing need for electricity-system flexibility to maintain real-time balance between energy supply and demand. In this paper, we explore optimal and incentive-compatible scheduling of generators for this purpose. Specifically, we examine a setting wherein each generator has a different operating cost if it is committed in advance (e.g., day- or hour-ahead) as opposed to being reserved as flexible real-time supply. We model an optimal division of generators between advanced commitment and real-time flexible reserves to minimize the expected cost of serving an uncertain demand. Next, we propose an incentive-compatible remuneration scheme with two key properties. First, the remuneration scheme incentivizes generators to reveal their true costs. Second, the scheme aligns generators’ incentives with the market operator’s optimal division of generators between advanced commitment and real-time reserve. We use a simple example to illustrate the market operator’s decision and the remuneration scheme. JEL Classification: C61, D47, D82, L94, Q4  more » « less
Award ID(s):
1029337 1548015 1808169 1922666
PAR ID:
10645605
Author(s) / Creator(s):
;
Publisher / Repository:
Sage Publishing
Date Published:
Journal Name:
The Energy Journal
Volume:
46
Issue:
6
ISSN:
0195-6574
Page Range / eLocation ID:
115 to 142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Demand Response (DR) programs serve to reduce the demand for electricity at times when the supply is scarce and expensive. Consumers or agents with flexible consumption profiles are recruited by an aggregator who manages the DR program. These agents are paid for reducing their energy consumption from contractually established baselines. Baselines are counter-factual consumption estimates against which load reductions are measured. Baseline consumption and the true cost of load reduction are consumer specific parameters and are unknown to the aggregator. The key components of any DR program are: (a) establishing a baseline against which demand reduction is measured, (b) designing the payment scheme for agents who reduce their consumption from this baseline, and (c) the selection scheme. We propose a self-reported baseline mechanism (SRBM) for the DR program. We show that truthful reporting of baseline and marginal utility is both incentive compatible and individually rational for every consumer under SRBM. We also give a a pod-sorting algorithm based DR scheduling for selecting consumers that is nearly optimal in terms of expected cost of DR provision. 
    more » « less
  2. Ride-hailing marketplaces like Uber and Lyft use dynamic pricing, often called surge, to balance the supply of available drivers with the demand for rides. We study driver-side payment mechanisms for such marketplaces, presenting the theoretical foundation that has informed the design of Uber’s new additive driver surge mechanism. We present a dynamic stochastic model to capture the impact of surge pricing on driver earnings and their strategies to maximize such earnings. In this setting, some time periods (surge) are more valuable than others (nonsurge), and therefore trips of different time lengths vary in the induced driver opportunity cost. First, we show that multiplicative surge, historically the standard on ride-hailing platforms, is not incentive compatible in a dynamic setting. We then propose a structured, incentive-compatible pricing mechanism. This closed-form mechanism has a simple form and is well approximated by Uber’s new additive surge mechanism. Finally, through both numerical analysis and real data from a ride-hailing marketplace, we show that additive surge is more incentive compatible in practice than is multiplicative surge. This paper was accepted by David Simchi-Levi, revenue management and market analytics. 
    more » « less
  3. We study the market structure for emerging distribution-level energy markets with high renewable energy penetration. Renewable generation is known to be uncertain and has a close-to-zero marginal cost. In this paper, we use solar energy as an example of such zero-marginal-cost resources for our focused study. We first show that, under high penetration of solar generation, the classical real-time market mechanism can either exhibit significant price-volatility (when each firm is not allowed to vary the supply quantity), or induce price-fixing (when each firm is allowed to vary the supply quantity), the latter of which leads to extreme unfairness of surplus division. To overcome these issues, we propose a new rental-market mechanism that trades the usage-right of solar panels instead of real-time solar energy. We show that the rental market produces a stable and unique price (therefore eliminating price-volatility), maintains positive surplus for both consumers and firms (therefore eliminating price-fixing), and achieves the same social welfare as the traditional real-time market. A key insight is that rental markets turn uncertainty of renewable generation from a detrimental factor (that leads to price-volatility in real-time markets) to a beneficial factor (that increases demand elasticity and contributes to the desirable rental-market outcomes). 
    more » « less
  4. Electricity markets are cleared by a two-stage, sequential process consisting of a forward (day-ahead) market and a spot (real-time) market. While their design goal is to achieve efficiency, the lack of sufficient competition introduces many opportunities for price manipulation. To discourage this phenomenon, some Independent System Operators (ISOs) mandate generators to submit (approximately) truthful bids in the day-ahead market. However, without fully accounting for all participants' incentives (generators and loads), the application of such a mandate may lead to unintended consequences. In this paper, we model and study the interactions of generators and inelastic loads in a two-stage settlement where generators are required to bid truthfully in the day-ahead market. We show that such mandate, when accounting for generator and load incentives, leads to a {generalized} Stackelberg-Nash game where load decisions (leaders) are performed in day-ahead market and generator decisions (followers) are relegated to the real-time market. Furthermore, the use of conventional supply function bidding for generators in real-time, does not guarantee the existence of a Nash equilibrium. This motivates the use of intercept bidding, as an alternative bidding mechanism for generators in the real-time market. An equilibrium analysis in this setting, leads to a closed-form solution that unveils several insights. Particularly, it shows that, unlike standard two-stage markets, loads are the winners of the competition in the sense that their aggregate payments are less than that of the competitive equilibrium. Moreover, heterogeneity in generators cost has the unintended effect of mitigating loads market power. Numerical studies validate and further illustrate these insights. 
    more » « less
  5. Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO). 
    more » « less