skip to main content


Title: Pricing flexibility of shiftable demand in electricity markets
Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO).  more » « less
Award ID(s):
2105648
NSF-PAR ID:
10324698
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM International Conference on Future Energy Systems
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. 
    more » « less
  2. null (Ed.)
    Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated. 
    more » « less
  3. Ardakanian, Omid ; Niesse, Astrid (Ed.)
    The rapid growth of datacenter (DC) loads can be leveraged to help meet renewable portfolio standard (RPS, renewable fraction)targets in power grids. The ability to manipulate DC loads over time(shifting) provides a mechanism to deal with temporal mismatch between non-dispatchable renewable generation (e.g. wind and solar) and overall grid loads, and this flexibility ultimately facilitates the absorption of renewables and grid decarbonization. To this end, we study DC-grid coupling models, exploring their impact on grid dispatch, renewable absorption, power prices, and carbon emissions.With a detailed model of grid dispatch, generation, topology, and loads, we consider three coupling approaches: fixed, datacenter-local optimization (online dynamic programming), and grid-wide optimization (optimal power flow). Results show that understanding the effects of dynamic DC load management requires studies that model the dynamics of both load and power grid. Dynamic DC-grid coupling can produce large improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).It also has negative effects: (1) increase cost for both DCs and non-DC customers, (2) differentially increase prices for non-DC customers, and (3) create large power-level changes that may harm DC productivity. 
    more » « less
  4. null (Ed.)
    Pricing multi-interval economic dispatch of electric power under operational uncertainty is considered in this two- part paper. Part I investigates dispatch-following incentives of profit-maximizing generators and shows that, under mild conditions, no uniform-pricing scheme for the rolling-window economic dispatch provides dispatch-following incentives that avoid discriminative out-of-the-market uplifts. A nonuniform pricing mechanism, referred to as the temporal locational marginal pricing (TLMP), is proposed. As an extension of the standard locational marginal pricing (LMP), TLMP takes into account both generation and ramping-induced opportunity costs. It eliminates the need for the out-of-the-market uplifts and guarantees full dispatch-following incentives regardless of the accuracy of the demand forecasts used in the dispatch. It is also shown that, under TLMP, a price-taking market participant has incentives to bid truthfully with its marginal cost of generation. Part II of the paper extends the theoretical results developed in Part I to more general network settings. It investigates a broader set of performance measures, including the incentives of the truthful revelation of ramping limits, revenue adequacy of the operator, consumer payments, generator profits, and price volatility under the rolling-window dispatch model with demand forecast errors. 
    more » « less
  5. We propose a new distribution locational marginal price (DLMP) model which is based on a linearized variant of the global energy balance formulation along with trust-region based solution methodology. Compared to existing DLMP works in the literature, the proposed DLMP model has shown to depict the following features: i) It decomposes into most general components, i.e., energy, loss, congestion and voltage; ii) it presents market equilibrium conditions; and ii) it is capable of achieving an efficient flexibility resource allocation in local day-ahead distribution grid markets. The developed model is tested first on a benchmark IEEE 33-bus distribution grid and then on much larger grids with the inclusion of dispatch from flexible loads (FLs) and distributed generators (DGs). 
    more » « less