skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 23, 2026

Title: Development and Optimization of a Top-Down 3D Printing System for Single-Tank Multi-Material Fabrication Using Hydrogel-Rochelle Salt Composites
Abstract This study explores a novel multi-material 3D printing technique for fabricating bioinspired hydrogel-Rochelle salt composites, focusing on optimizing concentration, cooling, and coating parameters to enhance material performance. The hydrogel-Rochelle salt composite is a promising material due to its lightweight, mechanical robustness, and piezoelectric properties, making it suitable for applications in sensors, medical devices, and structural materials. A series of concentration tests was conducted to determine the optimal Rochelle salt concentration for achieving efficient curing depth and exposure time. The results identified 50wt% hydrogel/50wt% Rochelle salt as the optimal concentration, providing a balanced curing profile essential for ensuring reliable layer adhesion and structural consistency. To enable controlled crystallization, a cooling process was introduced, with a cooling time of 15 minutes found to be sufficient for complete crystallization to a depth of 500 microns. Thermal imaging and microscopy confirmed the stability of the crystalline structure within the hydrogel matrix, ensuring the material’s functional integrity. Additionally, applying a coating to the printed structure significantly improved surface uniformity and durability, embedding the crystalline elements more effectively within the hydrogel matrix and enhancing the composite’s overall structural integrity. This coating process allowed the composite to withstand repeated printing cycles, facilitating the construction of layered, multi-material structures with improved mechanical and functional properties. The results highlight the importance of fine-tuning concentration, cooling time, and coating techniques to achieve optimal performance in multi-material 3D printing. By addressing these factors, the study demonstrates a reliable approach to producing hydrogel-Rochelle salt composites with high structural quality and piezoelectric functionality. This method not only enhances the material’s durability and adhesion between layers but also opens new possibilities for creating customized, multifunctional materials. The developed process holds significant promise for applications that require precise control over material properties, such as wearable electronics, medical implants, and lightweight structural components. In conclusion, this research provides valuable insights into the fabrication of hydrogel-Rochelle salt composites through advanced 3D printing techniques. The findings offer a foundation for future exploration in multi-material printing and composite fabrication, paving the way for the development of versatile materials with tailored properties for diverse applications.  more » « less
Award ID(s):
2113727 2441846
PAR ID:
10645615
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Berciano, Virginia (Ed.)
    Abstract Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering. 
    more » « less
  2. Abstract Traditional piezoelectric materials, such as lead zirconate titanate (PZT), are widely used due to their superior ability to convert mechanical energy into electrical energy. However, these lead-based ceramics are highly toxic and environmentally hazardous. This report explores Rochelle salt as an eco-friendly alternative, despite its brittleness and lower piezoelectric properties compared to PZT. The study investigates methods to enhance the energy capture of Rochelle salt crystals(RS) by varying crystal volume, impact frequency, and force, as well as by incorporating the 3D-printed biomimetic structure inspired by the pomelo fruit peel, which is naturally optimized for absorbing out-of-plane crushing forces. Experimental crystals grown within this structure were compared with those grown without it, focusing on energy capture and durability. Additionally, units with a 64:36 crystal-to-resin ratio were designed to assess the impact of crystal volume on voltage output. The experiments involved varying impact frequencies (120 rpm and 250 rpm) and compression distances (0.034 and 0.068 inches) using a digital oscilloscope and a custom crank slider mechanism. The results indicate that reducing crystal thickness and increasing rpms enhance voltage capture, suggesting that biomimetic structures can significantly improve the mechanical and electrical performance of piezoelectric materials. 
    more » « less
  3. This paper describes the 3D printing of a ternary composite of polydimethylsiloxane (PDMS) and nanoparticles of iron oxide and barium titanate. The composite was printed using a commercially available 3D printer. Thermal curing of the composite during printing allowed for overall low process times of a few minutes. Scanning electron microscopy indicated uniform composite layers. The resulting composite films showed ferromagnetic behaviour, and applicability in magnetic actuation and piezoelectric energy harvesting. 
    more » « less
  4. Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth. 
    more » « less
  5. Abstract High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle‐reinforced composite networks since deep light penetration of short‐wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet–triplet annihilation upconversion (TTA‐UC) is employed for curing opaque hydrogel composites created by direct‐ink‐write (DIW) 3D printing. TTA‐UC converts low energy red light (λmax = 660 nm) for deep penetration into higher‐energy blue light to initiate free radical polymerizations within opaque objects. As proof‐of‐principle, hydrogels containing up to 15 wt.% TiO2filler particles and doped with TTA‐UC chromophores are readily cured with red light, while composites without the chromophores and TiO2loadings as little as 1–2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D‐printed composite polymer networks. 
    more » « less