skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Learning Residual Distributions with Diffusion Models for Probabilistic Wind Power Forecasting
Accurate and uncertainty-aware wind power forecasting is essential for reliable and cost-effective power system operations. This paper presents a novel probabilistic forecasting framework based on diffusion probabilistic models. We adopted a two-stage modeling strategy—a deterministic predictor first generates baseline forecasts, and a conditional diffusion model then learns the distribution of residual errors. Such a two-stage decoupling strategy improves learning efficiency and sharpens uncertainty estimation. We employed the elucidated diffusion model (EDM) to enable flexible noise control and enhance calibration, stability, and expressiveness. For the generative backbone, we introduced a time-series-specific diffusion Transformer (TimeDiT) that incorporates modular conditioning to separately fuse numerical weather prediction (NWP) inputs, noise, and temporal features. The proposed method was evaluated using the public database from ten wind farms in the Global Energy Forecasting Competition 2014 (GEFCom2014). We further compared our approach with two popular baseline models, i.e., a distribution parameter regression model and a generative adversarial network (GAN)-based model. Results showed that our method consistently achieves superior performance in both deterministic metrics and probabilistic accuracy, offering better forecast calibration and sharper distributions.  more » « less
Award ID(s):
2443363
PAR ID:
10645628
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Energies
Volume:
18
Issue:
16
ISSN:
1996-1073
Page Range / eLocation ID:
4226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Denoising diffusion probabilistic models are a promising new class of generative models that mark a milestone in high-quality image generation. This paper showcases their ability to sequentially generate video, surpassing prior methods in perceptual and probabilistic forecasting metrics. We propose an autoregressive, end-to-end optimized video diffusion model inspired by recent advances in neural video compression. The model successively generates future frames by correcting a deterministic next-frame prediction using a stochastic residual generated by an inverse diffusion process. We compare this approach against six baselines on four datasets involving natural and simulation-based videos. We find significant improvements in terms of perceptual quality and probabilistic frame forecasting ability for all datasets. 
    more » « less
  2. Barambones, Oscar (Ed.)
    Accurate quantification of uncertainty in solar photovoltaic (PV) generation forecasts is imperative for the efficient and reliable operation of the power grid. In this paper, a data-driven non-parametric probabilistic method based on the Naïve Bayes (NB) classification algorithm and Dempster–Shafer theory (DST) of evidence is proposed for day-ahead probabilistic PV power forecasting. This NB-DST method extends traditional deterministic solar PV forecasting methods by quantifying the uncertainty of their forecasts by estimating the cumulative distribution functions (CDFs) of their forecast errors and forecast variables. The statistical performance of this method is compared with the analog ensemble method and the persistence ensemble method under three different weather conditions using real-world data. The study results reveal that the proposed NB-DST method coupled with an artificial neural network model outperforms the other methods in that its estimated CDFs have lower spread, higher reliability, and sharper probabilistic forecasts with better accuracy. 
    more » « less
  3. Accurate weather forecasting is critical for science and society. However, existing methods have not achieved the combination of high accuracy, low uncertainty, and high computational efficiency simultaneously. On one hand, traditional numerical weather prediction (NWP) models are computationally intensive because of their complexity. On the other hand, most machine learning-based weather prediction (MLWP) approaches offer efficiency and accuracy but remain deterministic, lacking the ability to capture forecast uncertainty. To tackle these challenges, we propose a conditional diffusion model, CoDiCast, to generate global weather prediction, integrating accuracy and uncertainty quantification at a modest computational cost. The key idea behind the prediction task is to generate realistic weather scenarios at a future time point, conditioned on observations from the recent past. Due to the probabilistic nature of diffusion models, they can be properly applied to capture the uncertainty of weather predictions. Therefore, we accomplish uncertainty quantifications by repeatedly sampling from stochastic Gaussian noise for each initial weather state and running the denoising process multiple times. Experimental results demonstrate that CoDiCast outperforms several existing MLWP methods in accuracy, and is faster than NWP models in inference speed. Our model can generate 6-day global weather forecasts, at 6-hour steps and 5.625-degree latitude-longitude resolutions, for over 5 variables, in about 12 minutes on a commodity A100 GPU machine with 80GB memory. The source code is available at https://github.com/JimengShi/CoDiCast. 
    more » « less
  4. Diffusion models, emerging as powerful deep generative tools, excel in various applications. They operate through a two-steps process: introducing noise into training samples and then employing a model to convert random noise into new samples (e.g., images). However, their remarkable generative performance is hindered by slow training and sampling. This is due to the necessity of tracking extensive forward and reverse diffusion trajectories, and employing a large model with numerous parameters across multiple timesteps (i.e., noise levels). To tackle these challenges, we present a multi-stage framework inspired by our empirical findings. These observations indicate the advantages of employing distinct parameters tailored to each timestep while retaining universal parameters shared across all time steps. Our approach involves segmenting the time interval into multiple stages where we employ custom multi-decoder U-net architecture that blends time-dependent models with a universally shared encoder. Our framework enables the efficient distribution of computational resources and mitigates inter-stage interference, which substantially improves training efficiency. Extensive numerical experiments affirm the effectiveness of our framework, showcasing significant training and sampling efficiency enhancements on three state-of-the-art diffusion models, including large-scale latent diffusion models. Furthermore, our ablation studies illustrate the impact of two important components in our framework: (i) a novel timestep clustering algorithm for stage division, and (ii) an innovative multi-decoder U-net architecture, seamlessly integrating universal and customized hyperparameters. 
    more » « less
  5. Abstract Extreme winds associated with tropical cyclones (TCs) can cause significant loss of life and economic damage globally, highlighting the need for accurate, high‐resolution modeling and forecasting for wind. However, due to their coarse horizontal resolution, most global climate and weather models suffer from chronic underprediction of TC wind speeds, limiting their use for impact analysis and energy modeling. In this study, we introduce a cascading deep learning framework designed to downscale high‐resolution TC wind fields given low‐resolution data. Our approach maps 85 TC events from ERA5 data (0.25° resolution) to high‐resolution (0.05° resolution) observations at 6‐hr intervals. The initial component is a debiasing neural network designed to model accurate wind speed observations using ERA5 data. The second component employs a generative super‐resolution strategy based on a conditional denoising diffusion probabilistic model (DDPM) to enhance the spatial resolution and to produce ensemble estimates. The model is able to accurately model intensity and produce realistic radial profiles and fine‐scale spatial structures of wind fields, with a percentage mean bias of −3.74% compared to the high‐resolution observations. Our downscaling framework enables the prediction of high‐resolution wind fields using widely available low‐resolution and intensity wind data, allowing for the modeling of past events and the assessment of future TC risks. 
    more » « less