skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generative Super‐Resolution Model for Enhancing Tropical Cyclone Wind Field Intensity and Resolution
Abstract Extreme winds associated with tropical cyclones (TCs) can cause significant loss of life and economic damage globally, highlighting the need for accurate, high‐resolution modeling and forecasting for wind. However, due to their coarse horizontal resolution, most global climate and weather models suffer from chronic underprediction of TC wind speeds, limiting their use for impact analysis and energy modeling. In this study, we introduce a cascading deep learning framework designed to downscale high‐resolution TC wind fields given low‐resolution data. Our approach maps 85 TC events from ERA5 data (0.25° resolution) to high‐resolution (0.05° resolution) observations at 6‐hr intervals. The initial component is a debiasing neural network designed to model accurate wind speed observations using ERA5 data. The second component employs a generative super‐resolution strategy based on a conditional denoising diffusion probabilistic model (DDPM) to enhance the spatial resolution and to produce ensemble estimates. The model is able to accurately model intensity and produce realistic radial profiles and fine‐scale spatial structures of wind fields, with a percentage mean bias of −3.74% compared to the high‐resolution observations. Our downscaling framework enables the prediction of high‐resolution wind fields using widely available low‐resolution and intensity wind data, allowing for the modeling of past events and the assessment of future TC risks.  more » « less
Award ID(s):
2019625
PAR ID:
10579841
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Machine Learning and Computation
Volume:
1
Issue:
4
ISSN:
2993-5210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts. 
    more » « less
  2. Abstract Mountain winds are the driving force behind snow accumulation patterns in mountainous catchments, making accurate wind fields a prerequisite to accurate simulations of snow depth for ecological or water resource applications. In this study, we examine the effect that wind fields derived from different coarse data sets and downscaling schemes has on simulations of modeled snow depth at resolutions suitable for basin‐scale modeling (>50 m). Simulations are run over the Tuolumne River Basin, CA for the accumulation season of Water Year 2017 using the distributed snow model, SnowModel. We derived wind fields using observations from either sensor networks, the North American Land Data Assimilation System (12.5 km resolution), or High‐Resolution Rapid Refresh (HRRR, 3 km resolution) data, and downscaled using terrain‐based multipliers (MicroMet), a mass‐conserving flow model (WindNinja), or bilinear interpolation. Two wind fields derived from 3 km HRRR data and downscaled with respect to terrain produced snow depth maps that best matched observations of snow depth from airborne LiDAR. We find that modeling these wind fields at 100 and 50 m resolutions do not produce improvements in simulated snow depth when compared to wind fields modeled at a 150 m resolution due to their inability to represent wind dynamics at these scales. For input to distributed snow models at the basin‐scale, we recommend deriving wind fields from high resolution numerical weather prediction model output and downscaling with respect to terrain. Future studies should compare suspension schemes used in blowing snow models and investigate wind downscaling schemes of complexity between statistical and fluid dynamic models. 
    more » « less
  3. We propose STSRNet, a joint space-time super-resolution deep learning based model for time-varying vector field data. Our method is designed to reconstruct high temporal resolution (HTR) and high spatial resolution (HSR) vector fields sequence from the corresponding low-resolution key frames. For large scale simulations, only data from a subset of time steps with reduced spatial resolution can be stored for post-hoc analysis. In this paper, we leverage a deep learning model to capture the non-linear complex changes of vector field data with a two-stage architecture: the first stage deforms a pair of low spatial resolution (LSR) key frames forward and backward to generate the intermediate LSR frames, and the second stage performs spatial super-resolution to output the high-resolution sequence. Our method is scalable and can handle different data sets. We demonstrate the effectiveness of our framework with several data sets through quantitative and qualitative evaluations. 
    more » « less
  4. Abstract This study compares the spread in climatological tropical cyclone (TC) precipitation across eight different reanalysis datasets: NCEP-CFSR, ERA-20C, ERA-40, ERA5, ERA-Interim, JRA-55, MERRA-2, and NOAA-20C. TC precipitation is assigned using manual tracking via a fixed 500-km radius from each TC center. The reanalyses capture similar general spatial patterns of TC precipitation and TC precipitation fraction, defined as the fraction of annual precipitation assigned to TCs, and the spread in TC precipitation is larger than the spread in total precipitation across reanalyses. The spread in TC precipitation relative to the inter-reanalysis mean TC precipitation, or relative spread, is larger in the east Pacific than in the west Pacific. Partitioned by reanalysis intensity, the largest relative spread across reanalyses in TC precipitation is from high-intensity TCs. In comparison with satellite observations, reanalyses show lower climatological mean annual TC precipitation over most areas. A comparison of area-averaged precipitation rate in TCs composited over reanalysis intensity shows the spread across reanalyses is larger for higher intensity TCs. Testing the sensitivity of TC precipitation assignment to tracking method shows that climatological mean annual TC precipitation is systematically larger when assigned via manual tracking versus objective tracking. However, this tendency is minimized when TC precipitation is normalized by TC density. Overall, TC precipitation in reanalyses is affected by not only horizontal output resolution or any TC preprocessing, but also data assimilation and parameterization schemes. The results indicate that improvements in the representation of TCs and their precipitation in reanalyses are needed to improve overall precipitation. 
    more » « less
  5. Abstract The diurnal cycle of precipitation plays a crucial role in regulating Earth's water cycle, energy balance, and regional climate patterns. However, the diurnal precipitation across mainland Southeast Asia (MSEA) and the factors influencing its spatial variations are not fully understood. In this study, we investigated diurnal precipitation patterns in summertime (June–August) from 2002 to 2005 over MSEA using ground‐based observations, satellite products, the global ERA5 reanalysis, and high‐resolution simulations from the Weather Research and Forecasting (WRF) Model at 9‐ and 3‐km grid spacing forced by ERA5 hourly data on ∼0.25° grids. Various observation‐based data sets including GHCN‐Daily, Multi‐Source Weighted‐Ensemble Precipitation (MSWEP), Asian Precipitation ‐ Highly‐Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Integrated Multi‐satellite Retrievals for Global Precipitation Measurement (IMERG) were used. In evaluating daily precipitation over MSEA, MSWEP, and APHRODITE data sets show similar patterns in precipitation amount, frequency, and intensity, while IMERG tends to produce higher amounts but with less frequency. ERA5 overestimates light precipitation compared to the other data sets. The WRF simulations generally produce heavier but less frequent light precipitation, with the 3‐km simulation producing less intense precipitation than the 9‐km simulation. A k‐means classification of IMERG data revealed five distinct spatial regimes with varying diurnal precipitation cycles. The WRF simulations closely match these regimes, capturing key diurnal cycles missed by ERA5 over mountainous regions and coastlines. Additionally, convective activities and near‐surface winds influence these cycles, with WRF simulations better representing coastal and mountain precipitation patterns than ERA5. High‐resolution WRF simulations, especially the 3‐km simulation, capture diurnal precipitation more accurately than ERA5, highlighting the importance of employing convection‐permitting models to simulate precipitation diurnal cycles over complex terrain. 
    more » « less