Icing on the blades of wind turbines during winter seasons causes a reduction in power and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network is considered as the model to predict icing from the SCADA data time series. All aspects of the icing prediction framework are described, including the necessary data preprocessing, the labeling of SCADA data for icing conditions, the selection of informative icing features or variables in SCADA data, and the design of a Temporal Convolutional Network as the prediction model. Two performance metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind turbine, the model achieves an average prediction accuracy of 77.6% for future times of up to 48 h.
more »
« less
This content will become publicly available on June 16, 2026
Multivariate Time-Series Modelling for Wind Turbine Subsystem Reliability Prediction
Abstract Wind turbine reliability monitoring and prediction are crucial for early failure detection, proactive maintenance, performance optimization, and cost reduction, especially as many utility-scale turbines near the midpoint or end of their operational lifespan. We proposed a wind turbine subsystem reliability prediction model to facilitate week-ahead forecasts of the occurrence, duration, and type of potential failures or probability of downtime for major turbine components, including the blade, hub, gearbox, generator, inverter, electrical, and control subsystems. Specifically, we developed an Instance-Normalization Decomposition Linear (IN-DLinear) model, grounded in deep time-series modelling theory. The distribution shifts in turbine state features across the training, validation, and test datasets, as well as across various time scales, were effectively mitigated with IN. The long-term inertia in turbine state features was addressed by decomposing the input time-series data to effectively capture seasonality. The efficacy of IN-DLinear is systematically evaluated using 10-year field measurements from a 2.5-MW wind turbine. IN-DLinear exhibited superior performance, reducing prediction errors by 13%∼30% compared to mean value judgment and other deep time-series models, including Seq2Seq, Transformer, and Autoformer.
more »
« less
- Award ID(s):
- 2443363
- PAR ID:
- 10645630
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Existing weather prediction products suffer from low spatiotemporal resolution, which fails to meet the requirements for fine-grained power forecasting and intelligent control of wind farms. This limitation adversely impacts wind turbine load management and the operational reliability of power systems. To tackle this, the study explores four-dimensional wind field superresolution, aiming to reconstruct high-resolution wind fields that fulfill both temporal and spatial resolution requirements through deep learning methods. The study emphasizes model architecture innovations to effectively capture the spatiotemporal coupling characteristics of wind field variations within wind farm regions. A novel model, termed 4dST-DMS, is proposed, comprising a spatial module and a temporal module, both built upon a 3D extension of the downsampled skip-connection/multi-scale framework as the backbone. Additionally, an iterative interpolation prediction method is proposed in the temporal module to extract multi-scale temporal information and capture dynamic variations, ensuring high fidelity in the reconstructed wind field. The proposed method is validated using the WTK-LED-5min dataset under experimental settings, including a 10-fold spatial resolution enhancement (both longitude and latitude), a 4-fold height resolution enhancement, and a 12-fold temporal resolution enhancement. The results demonstrate that the 4dST-DMS outperforms conventional interpolation methods and existing deep learning approaches in terms of numerical accuracy, vector field continuity and smoothness, structural similarity to real wind fields, and physical fidelity.more » « less
-
In cold climates, ice formation on wind turbines causes power reduction produced by a wind farm. This paper introduces a framework to predict icing at the farm level based on our recently developed Temporal Convolutional Network prediction model for a single turbine using SCADA data.First, a cross-validation study is carried out to evaluate the extent predictors trained on a single turbine of a wind farm can be used to predict icing on the other turbines of a wind farm. This fusion approach combines multiple turbines, thereby providing predictions at the wind farm level. This study shows that such a fusion approach improves prediction accuracy and decreases fluctuations across different prediction horizons when compared with single-turbine prediction. Two approaches are considered to conduct farm-level icing prediction: decision fusion and feature fusion. In decision fusion, icing prediction decisions from individual turbines are combined in a majority voting manner. In feature fusion, features of individual turbines are averaged first before conducting prediction. The results obtained indicate that both the decision fusion and feature fusion approaches generate farm-level icing prediction accuracies that are 7% higher with lower standard deviations or fluctuations across different prediction horizons when compared with predictions for a single turbine.more » « less
-
Deep neural networks, including the Transformer architecture, have achieved remarkable performance in various time series tasks. However, their effectiveness in handling clinical time series data is hindered by specific challenges: 1) Sparse event sequences collected asynchronously with multivariate time series, and 2) Limited availability of labeled data. To address these challenges, we propose Our code is available at https://github.com/SigmaTsing/TransEHR.git . , a self-supervised Transformer model designed to encode multi-sourced asynchronous sequential data, such as structured Electronic Health Records (EHRs), efficiently. We introduce three pretext tasks for pre-training the Transformer model, utilizing large amounts of unlabeled structured EHR data, followed by fine-tuning on downstream prediction tasks using the limited labeled data. Through extensive experiments on three real-world health datasets, we demonstrate that our model achieves state-of-the-art performance on benchmark clinical tasks, including in-hospital mortality classification, phenotyping, and length-of-stay prediction. Our findings highlight the efficacy of in effectively addressing the challenges associated with clinical time series data, thus contributing to advancements in healthcare analytics.more » « less
-
Wind tunnel experiments were performed to quantify the coupling mechanisms between incoming wind flows, power output fluctuations, and unsteady tower aerodynamic loads of a model wind turbine under periodically oscillating wind environments across various yaw misalignment angles. A high-resolution load cell and a data logger at high temporal resolution were applied to quantify the aerodynamic loads and power output, and time-resolved particle image velocimetry system was used to characterize incoming and wake flow statistics. Results showed that due to the inertia of the turbine rotor, the time series of power output exhibits a distinctive phase lag compared to the incoming periodically oscillating wind flow, whereas the phase lag between unsteady aerodynamic loads and incoming winds was negligible. Reduced-order models based on the coupling between turbine properties and incoming periodic flow characteristics were derived to predict the fluctuation intensity of turbine power output and the associated phase lag, which exhibited reasonable agreement with experiments. Flow statistics demonstrated that under periodically oscillating wind environments, the growth of yaw misalignment could effectively mitigate the overall flow fluctuation in the wake region and significantly enhance the stream-wise wake velocity cross correlation intensities downstream of the turbine hub location.more » « less
An official website of the United States government
