While the photophysics of closed-shell organic molecules is well established, much less is known about open-shell systems containing interacting radical pairs. In this work, we investigate the ultrafast excited state dynamics of a singlet verdazyl diradical system in solution using transient absorption (TA) spectroscopy for the first time. Following 510 nm excitation of the excitonic S0 → S1 transition, we detected TA signals in the 530–950 nm region from the S1 population that decayed exponentially within a few picoseconds to form a vibrationally hot S0* population via internal conversion. The dependence of the S1 decay rate on solvent and radical–radical distance revealed that the excited state possesses charge-transfer character and likely accesses the S0 state via torsional motion. The ultrafast internal conversion decay mechanism at play in our open-shell verdazyl diradicals is in stark contrast with other closed-shell, carbonyl-containing organic chromophores, which exhibit ultrafast intersystem crossing to produce long-lived triplet states as the major S1 decay pathway.
more »
« less
This content will become publicly available on July 14, 2026
How excitation wavelength affects excited state dynamics in o -nitrophenol: A theoretical perspective
The excited-state dynamics of o-nitrophenol have been explored using trajectory surface hopping nonadiabatic dynamics combined with floating occupation molecular orbital complete active space configuration interaction. We focus on the effect of excitation energy on the subsequent dynamics. The absorption spectrum of o-nitrophenol has two peaks, centered at 3.9 eV (∼320 nm) and 5.1 eV (∼240 nm), and we performed dynamics starting from each of these peaks. The results show that even though the relaxation time constants are similar for the two excitation windows, the underlying dynamics are different. When exciting to the low energy peak, the dynamics are dominated by intramolecular proton transfer followed by internal conversion to the ground state, while exciting to the high-energy peak leads to fast internal conversion to the first excited state and slower decay to the ground state. In this case, intramolecular proton transfer does not occur as frequently, and many trajectories decay to the ground state through conical intersections without proton transfer. By calculating spin–orbit coupling values along the trajectories, we also show that intersystem crossing is possible. Based on the Landau–Zener probability formula, we estimate that there is about a 30%–40% probability that intersystem crossing will occur within 1 ps.
more »
« less
- PAR ID:
- 10645632
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 163
- Issue:
- 2
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Time-resolved photoionization measurements were performed on o-nitrophenol pumped with UV laser pulses at a central wavelength of 255 nm (4.9 eV) and probed with vacuum ultraviolet (VUV) pulses at 153 nm (8.1 eV). The photoelectron spectrum and time of flight mass spectrum for ions were recorded at each pump–probe delay. The measurements are interpreted with the aid of electronic structure calculations for both the neutral and ionic states. Evidence is found for the formation of a bicyclic intermediate followed by NO dissociation through a process of internal conversion and intersystem crossing. The combination of photoelectron and photoion spectroscopy, together with computational results, provides strong evidence of intersystem crossing that is difficult to establish with only a single technique.more » « less
-
Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP−), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional “nanomachines” that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor–acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP− exhibits the strongest charge-transfer character with FSRS signatures (e.g., C–N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.more » « less
-
null (Ed.)Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways. In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5′-monophosphate are investigated in aqueous solution and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol–water mixture, the following general relaxation mechanism is proposed for both molecules, Lb → La → 1πσ*(ICT) → S0, where the 1πσ*(ICT) stands for an intramolecular charge transfer excited singlet state with significant πσ* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5′-monophosphate. Internal conversion of the 1πσ*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen atom for a methine (C–H) group at position seven of the guanine moiety stabilizes the 1ππ* Lb and La states and alters the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5′-monophosphate but not for the internal conversion of 1πσ*(ICT) state to the ground state.more » « less
-
Abstract Indigo, a rich blue dye, is an incredibly photostable molecule that has survived in ancient art for centuries. It is also unique in that it can undergo both an excited-state hydrogen and proton transfer on the picosecond timescale followed by a ground-state back transfer. Previously, we performed gas phase excited-state lifetime studies on indigo to study these processes in a solvent-free environment, combined with excited-state calculations. We found two decay pathways, a fast sub-nanosecond decay and a slow decay on the order of 10 ns. Calculations of the excited-state potential energy surface found that both hydrogen and proton transfer are nearly isoenergetic separated by a 0.1 eV barrier. To further elucidate these dynamics, we now report a study with deuterated indigo, using resonance-enhanced multi-photon ionization and pump-probe spectroscopy with mass spectrometric isotopomer selection. From new calculations of the excited-state potential energy surface, we find sequential double-proton or hydrogen transfer, whereby the trajectory to the second transfer passes a second barrier and then encounters a conical intersection that leads back to the ground state. We find that deuteration only increases the excited-state lifetimes of the fast decay channel, suggesting tunneling through the first barrier, while the slower channel is not affected and may involve a different intermediate state. Graphical abstractmore » « less
An official website of the United States government
