Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility. Open-source code can be found at https://github.com/yushundong/RELIANT.
more »
« less
This content will become publicly available on November 30, 2026
GATE: Graph Attention Neural Networks with Real-Time Edge Construction for Robust Indoor Localization using Mobile Embedded Devices
Accurate indoor localization is crucial for enabling spatial context in smart environments and navigation systems. Wi-Fi Received Signal Strength (RSS) fingerprinting is a widely used indoor localization approach due to its compatibility with mobile embedded devices. Deep Learning (DL) models improve accuracy in localization tasks by learning RSS variations across locations, but they assume fingerprint vectors exist in a Euclidean space, failing to incorporate spatial relationships and the non-uniform distribution of real-world RSS noise. This results in poor generalization across heterogeneous mobile devices, where variations in hardware and signal processing distort RSS readings. Graph Neural Networks (GNNs) can improve upon conventional DL models by encoding indoor locations as nodes and modeling their spatial and signal relationships as edges. However, GNNs struggle with non-Euclidean noise distributions and suffer from the GNN blind spot problem, leading to degraded accuracy in environments with dense access points (APs). To address these challenges, we propose GATE, a novel framework that constructs an adaptive graph representation of fingerprint vectors while preserving an indoor state-space topology, modeling the non-Euclidean structure of RSS noise to mitigate environmental noise and address device heterogeneity. GATE introduces (1) a novel Attention Hyperspace Vector (AHV) for enhanced message passing, (2) a novel Multi-Dimensional Hyperspace Vector (MDHV) to mitigate the GNN blind spot, and (3) a new Real-Time Edge Construction (RTEC) approach for dynamic graph adaptation. Extensive real-world evaluations across multiple indoor spaces with varying path lengths, AP densities, and heterogeneous devices demonstrate that GATE achieves 1.6 × to 4.72 × lower mean localization errors and 1.85 × to 4.57 × lower worst-case errors compared with state-of-the-art indoor localization frameworks.
more »
« less
- Award ID(s):
- 2132385
- PAR ID:
- 10645684
- Publisher / Repository:
- ACM TECS
- Date Published:
- Journal Name:
- ACM Transactions on Embedded Computing Systems
- Volume:
- 24
- Issue:
- 5s
- ISSN:
- 1539-9087
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
WiFi received signal strength (RSS) environment evolves over time due to the movement of access points (APs), AP power adjustment, installation and removal of APs, etc. We study how to effectively update an existing database of fingerprints, defined as the RSS values of APs at designated locations, using a batch of newly collected unlabelled (possibly crowdsourced) WiFi signals. Prior art either estimates the locations of the new signals without updating the existing fingerprints or filters out the new APs without sufficiently embracing their features. To address that, we propose GUFU, a novel effective graph-based approach to update WiFi fingerprints using unlabelled signals with possibly new APs. Based on the observation that similar signal vectors likely imply physical proximity, GUFU employs a graph neural network (GNN) and a link prediction algorithm to retrain an incremental network given the new signals and APs. After the retraining, it then updates the signal vectors at the designated locations. Through extensive experiments in four large representative sites, GUFU is shown to achieve remarkably higher fingerprint adaptivity as compared with other state-of-the-art approaches, with error reduction of 21.4% and 29.8% in RSS values and location prediction, respectively.more » « less
-
Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework calledFedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy.FedHILintegrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show thatFedHILoutperforms state-of-the-art FL and non-FL indoor localization frameworks.FedHILis able to achieve 1.62 × better localization accuracy on average than the best performing FL-based indoor localization framework from prior work.more » « less
-
Indoor navigation is necessary for users to explore large unfamiliar indoor environments such as airports, shopping malls, and hospital complex, which relies on the capability of continuously tracking a user's location. A typical indoor navigation system is built on top of a suitable Indoor Positioning System (IPS) and requires the user to periodically submit location queries to learn their whereabouts whereby to provide update-to-date navigation information. Received signal strength (RSS)-based IPSes are considered as one of the most classical IPSes, which locates a user by comparing the user's RSS measurement with the fingerprints collected at different locations in advance. Despite its significant advantages, existing RSS-IPSes suffer from two key challenges, the ambiguity of RSS fingerprints and device diversity, that may greatly reduce its positioning accuracy. In this paper, we introduce the design and evaluation of CITS, a novel RSS-based continuous indoor tracking system that can effectively cope with fingerprint ambiguity and device diversity via differential RSS fingerprint matching. Detailed experiment studies confirm the significant advantages of CITS over prior RSS-based solutions.more » « less
-
This paper proposes an AR-based real-time mobile system for assistive indoor navigation with target segmentation (ARMSAINTS) for both sighted and blind or low-vision (BLV) users to safely explore and navigate in an indoor environment. The solution comprises four major components: graph construction, hybrid modeling, real-time navigation and target segmentation. The system utilizes an automatic graph construction method to generate a graph from a 2D floorplan and the Delaunay triangulation-based localization method to provide precise localization with negligible error. The 3D obstacle detection method integrates the existing capability of AR with a 2D object detector and a semantic target segmentation model to detect and track 3D bounding boxes of obstacles and people to increase BLV safety and understanding when traveling in the indoor environment. The entire system does not require the installation and maintenance of expensive infrastructure, run in real-time on a smartphone, and can easily adapt to environmental changes.more » « less
An official website of the United States government
