skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2132385

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate indoor localization is crucial for enabling spatial context in smart environments and navigation systems. Wi-Fi Received Signal Strength (RSS) fingerprinting is a widely used indoor localization approach due to its compatibility with mobile embedded devices. Deep Learning (DL) models improve accuracy in localization tasks by learning RSS variations across locations, but they assume fingerprint vectors exist in a Euclidean space, failing to incorporate spatial relationships and the non-uniform distribution of real-world RSS noise. This results in poor generalization across heterogeneous mobile devices, where variations in hardware and signal processing distort RSS readings. Graph Neural Networks (GNNs) can improve upon conventional DL models by encoding indoor locations as nodes and modeling their spatial and signal relationships as edges. However, GNNs struggle with non-Euclidean noise distributions and suffer from the GNN blind spot problem, leading to degraded accuracy in environments with dense access points (APs). To address these challenges, we propose GATE, a novel framework that constructs an adaptive graph representation of fingerprint vectors while preserving an indoor state-space topology, modeling the non-Euclidean structure of RSS noise to mitigate environmental noise and address device heterogeneity. GATE introduces (1) a novel Attention Hyperspace Vector (AHV) for enhanced message passing, (2) a novel Multi-Dimensional Hyperspace Vector (MDHV) to mitigate the GNN blind spot, and (3) a new Real-Time Edge Construction (RTEC) approach for dynamic graph adaptation. Extensive real-world evaluations across multiple indoor spaces with varying path lengths, AP densities, and heterogeneous devices demonstrate that GATE achieves 1.6 × to 4.72 × lower mean localization errors and 1.85 × to 4.57 × lower worst-case errors compared with state-of-the-art indoor localization frameworks. 
    more » « less
    Free, publicly-accessible full text available November 30, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Free, publicly-accessible full text available March 31, 2026
  4. Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework calledFedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy.FedHILintegrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show thatFedHILoutperforms state-of-the-art FL and non-FL indoor localization frameworks.FedHILis able to achieve 1.62 × better localization accuracy on average than the best performing FL-based indoor localization framework from prior work. 
    more » « less