Abstract Following the largest magnetic storm in 20 years (10 May 2024), REPTile‐2 on NASA's CIRBE satellite identified two new radiation belts containing 1.3–5 MeV electrons aroundL = 2.5–3.5 and 6.8–20 MeV protons aroundL = 2. The region aroundL = 2.5–3.5 is usually devoid of relativistic electrons due to wave‐particle interactions that scatter them into the atmosphere. However, these 1.3–5 MeV electrons in this new belt seemed unaffected until a magnetic storm on 28 June 2024, perturbed the region. The long‐lasting nature of this new electron belt has physical implications for the dependence of electron wave‐particle interactions on energy, plasma density, and magnetic field strength. The enhancement of protons aroundL = 2 exceeded an order of magnitude between 6.8 and 15 MeV forming a distinct new proton belt that appears even more stable. CIRBE, after a year of successful operation, malfunctioned 25 days before the super storm but returned to functionality 1 month after the storm, enabling these discoveries.
more »
« less
This content will become publicly available on September 4, 2026
Measuring Solar Energetic Particles With a CubeSat‐Scale Energetic Particle Telescope: Geant4 Based Design of the REPTile‐3 Instrument
Abstract Solar Energetic Particles (SEPs) are present during increased solar activity, often associated with solar flares and coronal mass ejections (CMEs). Measuring and understanding these particles is important both for fundamental solar physics knowledge as well as the determination of radiation risks in interplanetary space. Solid‐state particle telescopes are a useful tool to measure these particles. The Relativistic Electron and Proton Telescope integrated little experiment‐2 (REPTile‐2) was a solid‐state energetic particle telescope that flew onboard the Colorado Inner Radiation Belt Experiment (CIRBE) and demonstrated a capability to measure electrons from 0.25 to 6 MeV and protons from 7 to 100 MeV with high energy and time resolution. REPTile‐2 operated in a low‐Earth orbit (LEO) and primarily measured radiation belt particles but was also able to measure SEPs during high‐latitude passes. Because of REPTile‐2's solid performance and its CubeSat‐scale size, weight, and power, an opportunity arose to fly a modified REPTile‐2, dubbed REPTile‐3, on the Emirates Mission to the Asteroid Belt (EMA). In this paper, Geometry and tracking 4 (Geant4) Monte Carlo simulations are used to motivate changes to improve REPTile‐3's ability to measure SEPs. Additionally, full instrument response functions and estimated count rates are used to understand the instrument's response to SEP fluxes. REPTile‐3 is shown to be able to measure 1.2–35 MeV protons with ΔE/E < 9%, 35–100 MeV protons with ΔE/E < 50%, 0.1–5 MeV electrons with ΔE/E < 14%, 18–131 MeV helium ions with ΔE/E < 7%, and 131–200 MeV helium ions with ΔE/E < 50% with a 102° field of view (FOV).
more »
« less
- Award ID(s):
- 2342473
- PAR ID:
- 10645917
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 130
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Discovery of the Earth's Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth's magnetic field until they suffer collisional loss. A view of the belts as quasi‐static inner and outer zones of energetic particles with different sources was modified by observations made during the Solar Cycle 22 maximum in solar activity over 1989–1991. The dynamic variability of outer zone electrons was measured by the Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure that vary with the solar cycle. The launch of the twin Van Allen Probes in August 2012 has provided much longer and more comprehensive measurements during the declining phase of Solar Cycle 24. Roughly half of moderate geomagnetic storms, determined by intensity of the ring current carried mostly by protons at hundreds of kiloelectron volts, produce an increase in trapped relativistic electron flux in the outer zone. Mechanisms for accelerating electrons of hundreds of electron volts stored in the tail region of the magnetosphere to MeVenergies in the trapping region are described in this review: prompt and diffusive radial transport and local acceleration driven by magnetospheric waves. Such waves also produce pitch angle scattering loss, as does outward radial transport, enhanced when the magnetosphere is compressed. While quasilinear simulations have been used to successfully reproduce many essential features of the radiation belt particle dynamics, nonlinear wave‐particle interactions are found to be potentially important for causing more rapid particle acceleration or precipitation. The findings on the fundamental physics of the Van Allen radiation belts potentially provide insights into understanding energetic particle dynamics at other magnetized planets in the solar system, exoplanets throughout the universe, and in astrophysical and laboratory plasmas. Computational radiation belt models have improved dramatically, particularly in the Van Allen Probes era, and assimilative forecasting of the state of the radiation belts has become more feasible. Moreover, machine learning techniques have been developed to specify and predict the state of the Van Allen radiation belts. Given the potential Space Weather impact of radiation belt variability on technological systems, these new radiation belt models are expected to play a critical role in our technological society in the future as much as meteorological models do today.more » « less
-
Large solar eruptions are often associated with long-duration γ-ray emission extending well above 100 MeV. While this phenomenon is known to be caused by high-energy ions interacting with the solar atmosphere, the underlying dominant acceleration process remains under debate. Potential mechanisms include continuous acceleration of particles trapped within large coronal loops or acceleration at coronal mass ejection (CME)-driven shocks, with subsequent back-propagation toward the Sun. As a test of the latter scenario, previous studies have explored the relationship between the inferred particle population producing the high-energy γ-rays and the population of solar energetic particles (SEPs) measured in situ. However, given the significant limitations on available observations, these estimates unavoidably rely on a number of assumptions. In an effort to better constrain theories of the γ-ray emission origin, we reexamine the calculation uncertainties and how they influence the comparison of these two proton populations. We show that, even accounting for conservative assumptions related to the γ-ray flare, SEP event, and interplanetary scattering modeling, their statistical relationship is only poorly/moderately significant. However, though the level of correlation is of interest, it does not provide conclusive evidence for or against a causal connection. The main result of this investigation is that the fraction of the shock-accelerated protons required to account for the γ-ray observations is >20%–40% for six of the 14 eruptions analyzed. Such high values argue against current CME-shock origin models, predicting a <2% back-precipitation; hence, the computed number of high-energy SEPs appears to be greatly insufficient to sustain the measured γ-ray emission.more » « less
-
Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations.more » « less
-
Abstract Drift periodic echoes of electrons in the inner belt appear as structured bands in energy spectrograms, also known as “zebra stripes”. Such phenomenon is normally observed at energies from 10s of keV to ∼250 keV. We report multiple series of zebra stripes of relativistic electrons observed by the recent Colorado Inner Radiation Belt Experiment (CIRBE) CubeSat. The high energy resolution measurements taken by the REPTile‐2 (Relativistic Electron and Proton Telescope integrated little experiment‐2) instrument onboard CIRBE show that zebra stripes of radiation belt electrons can be observed from 300 keV to >1 MeV, crossing theLrange from 1.18 to >3, from quiet times to storm times. Through test particle simulations, we show that a prompt electric field with a peak amplitude ∼5 mV/m in near‐Earth space can trigger zebra stripes of relativistic electrons. Azimuthal inhomogeneity of electron distribution caused by the prompt electric field modulates the electron energy spectrum by energy‐dependent drift phases to form zebra stripes. Though zebra stripes are observed in both belts, they tend to last longer and appear more frequently in the inner belt. Zebra stripes in the outer belt will have a shorter lifetime due to more perturbations there, including energy and pitch‐angle diffusion, which diminish the structure. This study demonstrates the important role of electric fields in the dynamics of relativistic electrons and contributes to the understanding of the mechanisms creating and diminishing zebra stripes.more » « less
An official website of the United States government
