skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 28, 2026

Title: The Kinematic Age of 3I/ATLAS and Its Implications for Early Planet Formation
Abstract The recent discovery of the third interstellar object (3I/ATLAS) expands the known census from two to three and significantly improves statistical inferences regarding the underlying Galactic population. In this Letter, we argue that cometary activity likely significantly contributes to 3I/ATLAS’s brightness since the nuclear size inferred when assuming an asteroidal reflectance implies an untenable interstellar object mass per star. Relative to the Sun, 3I/ATLAS exhibits a high excess velocity ofv= 58 km s−1, which implies that 3I/ATLAS is relatively old in comparison to previous interstellar objects. Here, we calculate the posterior distribution of ages implied by the kinematics of the interstellar objects and find that 3I/ATLAS is likely ∼3–11 Gyr old, assuming that the interstellar object and stellar age–velocity dispersion relations are equivalent. We also calculate the distribution of host star metallicities and find that 3I/ATLAS has a 12% chance of originating from a star with [Fe/H] ≤ −0.4. These results show that interstellar object formation is likely efficient at low metallicities and early in the history of the Galaxy. Finally, we estimate the interstellar object formation rate throughout Galactic history implied by these three objects. As future interstellar objects are discovered, the framework presented here can be applied to further refine this calculation. Comparison between the interstellar object and stellar formation histories will provide unique insights into the history of stellar system formation in the Galaxy.  more » « less
Award ID(s):
2303553
PAR ID:
10646049
Author(s) / Creator(s):
;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
990
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
  2. Abstract The discovery of two interstellar objects passing through the solar system, 1I/‘Oumuamua and 2I/Borisov, implies that a galactic population exists with a spatial number density of order ∼0.1 au−3. The forthcoming Rubin Observatory Legacy Survey of Space and Time (LSST) has been predicted to detect more asteroidal interstellar objects like 1I/‘Oumuamua. We apply recently developed methods to simulate a suite of galactic populations of interstellar objects with a range of assumed kinematics, albedos, and size–frequency distributions (SFDs). We incorporate these populations into the objectsInField algorithm, which simulates detections of moving objects by an arbitrary survey. We find that the LSST should detect between ∼0 and 70 asteroidal interstellar objects every year (assuming the implied number density), with sensitive dependence on the SFD slope and characteristic albedo of the host population. The apparent rate of motion on the sky—along with the associated trailing loss—appears to be the largest barrier to detecting interstellar objects. Specifically, a relatively large number of synthetic objects would be detectable by the LSST if not for their rapid sky motion (>0.°5 day−1). Therefore, algorithms that could successfully link and detect rapidly moving objects would significantly increase the number of interstellar object discoveries with the LSST (and in general). The mean diameter of detectable, inactive interstellar objects ranges from ∼50 to 600 m and depends sensitively on the SFD slope and albedo. 
    more » « less
  3. Abstract 3I/ATLAS is the third macroscopic interstellar object detected traversing the solar system. Since its initial discovery on UT 2025 July 1, hundreds of hours on a range of observational facilities have been dedicated to measuring the physical properties of this object. These observations have provided astrometry to refine the orbital solution, photometry to measure the color, a rotation period and secular light curve, and spectroscopy to characterize the composition of the coma. Here, we report precovery photometry of 3I/ATLAS as observed with NASA’s Transiting Exoplanet Survey Satellite (TESS). 3I/ATLAS was observed nearly continuously by TESS from UT 2025 May 7 to 2025 June 2. We use the shift-stack method to create deepstack images to recover the object. These composite images reveal that 3I/ATLAS has an average TESS magnitude ofTmag = 20.83 ± 0.05, 19.28 ± 0.05 and an absolute visual magnitude ofHV = 13.72 ± 0.35;12.52 ± 0.35, the latter being consistent with magnitudes reported in 2025 July. When coupled with recent Hubble Space Telescope images deriving a nucleus size ofR< 2.8 km (H> 15.4), our measurements suggest that 3I/ATLAS may have been active out at ∼6 au. Additionally, we extract a ∼20 day light curve and find no statistically significant evidence of a nucleus rotation period. Nevertheless, the data presented here are some of the earliest precovery images of 3I/ATLAS and may be used in conjunction with future observations to constrain the properties of our third interstellar interloper. 
    more » « less
  4. Abstract Interstellar objects provide a direct window into the environmental conditions around stars other than the Sun. The recent discovery of 3I/ATLAS, a new interstellar comet, offers a unique opportunity to investigate the physical and chemical properties of interstellar objects and to compare them with those of comets in our own solar system. In this Letter we present the results of a 10 night spectroscopic and photometric monitoring campaign with the 2.4 m Hiltner and 1.3 m McGraw–Hill telescopes at the MDM Observatory. The campaign was conducted between August 8 and 17 while 3I/ATLAS was inbound at heliocentric distances of 3.2–2.9 au. Our observations captured the onset of optical gas activity. Nightly spectra reveal a weak CN emission feature in the coma of 3I/ATLAS, absent during the first nights but steadily strengthening thereafter. We measure a CN production rate ofQ(CN) ∼ 6 × 1024s−1, toward the lower end of activity observed in solar system comets. Simultaneous photometry also indicates a small but measurable increase in the coma’s radial profile and increasingr-bandAfρwith values in the order of ∼300 cm. We derived a gas-to-dust production ratio of log Q ( CN ) / A f ρ 22.4 . Our upper limit on the C2-to-CN ratio ( log Q ( C 2 ) / Q ( CN ) 0.8 ) indicates that 3I/ATLAS is a strongly carbon-chain-depleted comet. Further observations of 3I/ATLAS are required to verify the apparent carbon-chain depletion and to explore whether such composition represents a recurring trait of the interstellar comet population. 
    more » « less
  5. Abstract The baryon cycle is crucial for understanding galaxy formation, as gas inflows and outflows vary throughout a galaxy’s lifetime and affect its star formation rate. Despite the necessity of accretion for galaxy growth at high redshifts, direct observations of inflowing gas have proven elusive, especially atz ≳ 2. We present a spectroscopic analysis of a galaxy at redshiftz= 2.45, which exhibits signs of inflow in several ultraviolet interstellar absorption lines, with no clear outflow signatures. The absorption lines are redshifted by ∼250 km s−1with respect to the systemic redshift, and Civshows a prominent inverse P-Cygni profile. Simple stellar population models suggest that this galaxy has a low metallicity (∼5% solar), with a very young starburst of age ∼4 Myr dominating the ultraviolet luminosity. The gas inflow velocity and nebular velocity dispersion suggest an approximate halo mass of order ∼1011M, a regime in which simulations predict that bursty star formation is common at this redshift. We conclude that this system is likely in the beginning of a cycle of bursty star formation, where inflow and star formation rates are high, but where supernovae and other feedback processes have not yet launched strong outflows. In this scenario, we expect the inflow-dominated phase to be observable (e.g., with net redshifted interstellar medium absorption) for only a short timescale after a starburst onset. This result represents a promising avenue for probing the full baryon cycle, including inflows, during the formative phases of low-mass galaxies at high redshifts. 
    more » « less