Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3which, if uniform across the galactic disk, would imply 1025to 1026similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108and ∼109years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population.
more »
« less
Synthetic Detections of Interstellar Objects with the Rubin Observatory Legacy Survey of Space and Time
Abstract The discovery of two interstellar objects passing through the solar system, 1I/‘Oumuamua and 2I/Borisov, implies that a galactic population exists with a spatial number density of order ∼0.1 au−3. The forthcoming Rubin Observatory Legacy Survey of Space and Time (LSST) has been predicted to detect more asteroidal interstellar objects like 1I/‘Oumuamua. We apply recently developed methods to simulate a suite of galactic populations of interstellar objects with a range of assumed kinematics, albedos, and size–frequency distributions (SFDs). We incorporate these populations into the objectsInField algorithm, which simulates detections of moving objects by an arbitrary survey. We find that the LSST should detect between ∼0 and 70 asteroidal interstellar objects every year (assuming the implied number density), with sensitive dependence on the SFD slope and characteristic albedo of the host population. The apparent rate of motion on the sky—along with the associated trailing loss—appears to be the largest barrier to detecting interstellar objects. Specifically, a relatively large number of synthetic objects would be detectable by the LSST if not for their rapid sky motion (>0.°5 day−1). Therefore, algorithms that could successfully link and detect rapidly moving objects would significantly increase the number of interstellar object discoveries with the LSST (and in general). The mean diameter of detectable, inactive interstellar objects ranges from ∼50 to 600 m and depends sensitively on the SFD slope and albedo.
more »
« less
- Award ID(s):
- 2303553
- PAR ID:
- 10478215
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 4
- Issue:
- 12
- ISSN:
- 2632-3338
- Format(s):
- Medium: X Size: Article No. 230
- Size(s):
- Article No. 230
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The nondetection of a coma surrounding 1I/‘Oumuamua, the first discovered interstellar object (ISO), has prompted a variety of hypotheses to explain its nongravitational acceleration. Given that forthcoming surveys are poised to identify analogs of this enigmatic object, it is prudent to devise alternative approaches to characterization. In this study, we posit X-ray spectroscopy as a surprisingly effective probe of volatile ISO compositions. Heavily ionized metals in the solar wind interact with outgassed neutrals and emit high-energy photons in a process known as charge exchange, and charge-exchange-induced X-rays from comets and planetary bodies have been observed extensively in our solar system. We develop a model to predict the X-ray flux of an ISO based on its chemical inventory and ephemeris. We find that while standard cometary constituents, such as H2O, CO2, CO, and dust, are best probed via optical or infrared observations, we predict strong X-ray emission generated by charge exchange with extended comae of H2and N2—species that lack strong infrared fluorescence transitions. We find that XMM-Newton would have been sensitive to charge exchange emission from 1I/‘Oumuamua during the object’s close approach to Earth, and that constraints on composition may have been feasible. We argue for follow-up X-ray observations of newly discovered ISOs with close-in perihelia. Compositional constraints on the general ISO population could reconcile the apparently self-conflicting nature of 1I/‘Oumuamua and provide insight into the earliest stages of planet formation in extrasolar systems.more » « less
-
Abstract Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios.Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission.more » « less
-
Abstract In this paper, we present an open-source software (Simulator of Asteroid Malformation Under Stress,SAMUS) that simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosities and sizes. This software solves the Navier–Stokes equations on a finite-element mesh, incorporating the centrifugal, Coriolis, self-gravitational, and tidal forces. The primary functionality is to simulate the deformation of minor bodies under the influence of tidal forces. It may therefore be used to constrain the composition and physical structure of bodies experiencing significant tidal forces, such as 99942 Apophis and 1I/‘Oumuamua. We demonstrate thatSAMUSwill be useful to constrain the material properties of Apophis during its near-Earth flyby in 2029. Depending on the material properties, Apophis may experience an area change of up to 0.5%, with similar effects on the photometric brightness. We also applySAMUSto constrain the material dynamic viscosity of 1I/‘Oumuamua, the first interstellar object discovered traversing the inner solar system. ‘Oumuamua experienced a close approach to the Sun at perihelion (q≃ 0.25 au) during which there were significant tidal forces that may have caused deformation of the body. This deformation could have lead to observable changes in the photometric light curve based on the material properties. The application ofSAMUSto produce synthetic observations which incorporate tidal deformation effects demonstrates that no deformation—an infinite dynamic viscosity—best reproduces the photometric data. While these results indicate that ‘Oumuamua did not experience significant tidal deformation, a sophisticated model incorporating nonprincipal axis rotation is necessary to conclusively analyze both ‘Oumuamua and Apophis.more » « less
-
Context. The Milky Way’s central molecular zone (CMZ) has been measured to form stars ten times less efficiently than in the Galactic disk, based on emission from high-mass stars. However, the CMZ’s low-mass (⩽2M⊙) protostellar population, which accounts for most of the initial stellar mass budget and star formation rate (SFR), is poorly constrained observationally due to limited sensitivity and resolution. Aims. We aim to perform a cloud-wide census of the protostellar population in three massive CMZ clouds. Methods. We present the Dual-band Unified Exploration of three CMZ Clouds (DUET) survey, targeting the 20 km s−1cloud, Sgr C, and the dust ridge cloud “e” using the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 and 3 mm. The mosaicked observations achieve a comparable resolution of 0.′′2–0.′′3 (∼2000 au) and a sky coverage of 8.3–10.4 arcmin2, respectively. Results. We report 563 continuum sources at 1.3 mm and 330 at 3 mm, respectively, and a dual-band catalog with 450 continuum sources. These sources are marginally resolved at a resolution of 2000 au. We find a universal deviation (>70% of the source sample) from commonly used dust modified blackbody (MBB) models, characterized by either low spectral indices or low brightness temperatures. Conclusions. Three possible explanations are discussed for the deviation. (1) Optically thick class 0/I young stellar objects (YSOs) with a very small beam filling factor can lead to lower brightness temperatures than what MBB models predict. (2) Large dust grains with millimeter or centimeter in size have more significant self-scattering, and frequency-dependent albedo could therefore cause lower spectral indices. (3) Free-free emission over 30 μJy can severely contaminate dust emission and cause low spectral indices for milliJansky sources, although the number of massive protostars (embedded UCHIIregions) needed is infeasibly high for the normal stellar initial mass function. A reliable measurement of the SFR at low protostellar masses will require future work to distinguish between these possible explanations.more » « less
An official website of the United States government
