skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 6, 2026

Title: PUF-augmented QR: Harnessing QR code background for surface authentication via physically unclonable features (PUFs)
Award ID(s):
2227499
PAR ID:
10646073
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR) 2025
Date Published:
Format(s):
Medium: X
Location:
San Jose, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $$A \in \Z^{m \times n}$$ as $A=QDR$, where $$Q \in \Z^{m \times m}$$ has pairwise orthogonal columns, $$D$$ is a diagonal matrix, and $$R \in \Z^{m \times n}$$ is an upper trapezoidal matrix; notably, the entries of $$Q$$ and $$R$$ are integral, while the entries of $$D$$ are reciprocals of integers. In the thin REF QR factorization, $$Q \in \Z^{m \times n}$$ also has pairwise orthogonal columns, and $$R \in \Z^{n \times n}$$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $$x$$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix). 
    more » « less
  2. Transport Network companies (TNCs) have changed the way we travel in the last five years where a rider can book a ride using her smartphone. However, TNC doesn't provide any robust mechanism to validate the driver or the rider before the ride. This has led to many violent incidents ranging from assault, kidnap of the riders by fake ride-hailing drivers. The most recent one that shook the entire nation is the murder of a USC student when the rider got into the wrong car thinking that it is her Uber [1]. To address this problem, we have proposed a solution that adds an extra security layer in authenticating both rider and driver before initiating a ride. In this solution, both rider and driver will authenticate themselves using technologies like QR Code and fingerprint biometrics supported by modern smartphones before they take the ride. 
    more » « less
  3. Zhou, Jianhong; Osten, Wolfgang; Nikolaev, Dmitry P. (Ed.)
    Despite recent advances in deep learning, object detection and tracking still require considerable manual and computational effort. First, we need to collect and create a database of hundreds or thousands of images of the target objects. Next we must annotate or curate the images to indicate the presence and position of the target objects within those images. Finally, we must train a CNN (convolution neural network) model to detect and locate the target objects in new images. This training is usually computationally intensive, consists of thousands of epochs, and can take tens of hours for each target object. Even after the model training in completed, there is still a chance of failure if the real-time tracking and object detection phases lack sufficient accuracy, precision, and/or speed for many important applications. Here we present a system and approach which minimizes the computational expense of the various steps in the training and real-time tracking process outlined above of for applications in the development of mixed-reality science laboratory experiences by using non-intrusive object-encoding 2D QR codes that are mounted directly onto the surfaces of the lab tools to be tracked. This system can start detecting and tracking it immediately and eliminates the laborious process of acquiring and annotating a new training dataset for every new lab tool to be tracked. 
    more » « less
  4. We describe a system called Qr-Hint that, given a (correct) target query Q* and a (wrong) working query Q, both expressed in SQL, provides actionable hints for the user to fix the working query so that it becomes semantically equivalent to the target. It is particularly useful in an educational setting, where novices can receive help from Qr-Hint without requiring extensive personal tutoring. Since there are many different ways to write a correct query, we do not want to base our hints completely on how Q* is written; instead, starting with the user's own working query, Qr-Hint purposefully guides the user through a sequence of steps that provably lead to a correct query, which will be equivalent to Q* but may still look quite different from it. Ideally, we would like Qr-Hint's hints to lead to the smallest possible corrections to Q. However, optimality is not always achievable in this case due to some foundational hurdles such as the undecidability of SQL query equivalence and the complexity of logic minimization. Nonetheless, by carefully decomposing and formulating the problems and developing principled solutions, we are able to provide provably correct and locally optimal hints through Qr-Hint. We show the effectiveness of Qr-Hint through quality and performance experiments as well as a user study in an educational setting. 
    more » « less