Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown.
more »
« less
This content will become publicly available on October 1, 2026
Properties of Cold Pools from PERiLS 2022–23
Abstract Cold pools play a range of important roles in quasi-linear convective systems (QLCSs), including maintenance via the development of new convective cells as well as baroclinic generation of horizontal vorticity. Although a number of QLCS cold pools have been characterized in the literature using one or a few sensors, their variability (both internally and across a range of environments) has still not been widely studied. This gap in knowledge extends particularly to high-shear low-CAPE (HSLC) convective environments common to the cool season in the southeastern United States, where the Propagation, Evolution, and Rotation in Linear Storms (PERiLS) field campaign was focused. PERiLS specifically targeted environmental and storm-scale processes in QLCSs, including their cold pools. Our analysis focuses on the heterogeneity and temporal variability of cold pools across short time and spatial scales using numerous surface and sounding observations across five PERiLS QLCSs. The PERiLS cold pools are generally weaker than those previously studied in warm-season, midlatitude QLCSs, likely due to the lower CAPE and higher relative humidity values common to HSLC environments during PERiLS. Nevertheless, the distributions of most PERiLS cold pool variables at least partially overlap with those of previously studied QLCSs. The median PERiLS measurement reveals a cold pool that is ≈2.5 km deep, having a surface temperature decrease of ≈−6°C, and a peak outflow wind gust of ≈13 m s−1. In the spirit of a “cold pool audit,” we present the internal and case-to-case variability of these particularly well-observed QLCSs. Significance StatementEvaporatively cooled air masses (“cold pools”) are created by quasi-linear convective systems (“QLCSs,” also called “squall lines”), and they in turn play important roles in the maintenance and structures of QLCSs. There have been relatively few direct measurements of cold pool variability, especially for the frequently severe QLCSs occurring during the cool season in the southeastern United States. Numerous surface and upper-air measurements from the recent Propagation, Evolution, and Rotation in Linear Storms (“PERiLS”) field experiment are used to document Southeastern QLCS cold pools. The PERiLS cold pools were surprisingly similar to, albeit somewhat weaker than, those found in prior studies of warm-season QLCSs in other regions.
more »
« less
- PAR ID:
- 10646104
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 153
- Issue:
- 10
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 2085 to 2106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Severe convection occurring in high-shear, low-CAPE (HSLC) environments is a common cool-season threat in the southeastern United States. Previous studies of HSLC convection document the increased operational challenges that these environments present compared to their high-CAPE counterparts, corresponding to higher false-alarm ratios and lower probability of detection for severe watches and warnings. These environments can exhibit rapid destabilization in the hours prior to convection, sometimes associated with the release of potential instability. Here, we use self-organizing maps (SOMs) to objectively identify environmental patterns accompanying HSLC cool-season severe events and associate them with variations in severe weather frequency and distribution. Large-scale patterns exhibit modest variation within the HSLC subclass, featuring strong surface cyclones accompanied by vigorous upper-tropospheric troughs and northward-extending regions of instability, consistent with prior studies. In most patterns, severe weather occurs immediately ahead of a cold front. Other convective ingredients, such as lower-tropospheric vertical wind shear, near-surface equivalent potential temperature (θe) advection, and the release of potential instability, varied more significantly across patterns. No single variable used to train SOMs consistently demonstrated differences in the distribution of severe weather occurrence across patterns. Comparison of SOMs based on upper and lower quartiles of severe occurrence demonstrated that the release of potential instability was most consistently associated with higher-impact events in comparison to other convective ingredients. Overall, we find that previously developed HSLC composite parameters reasonably identify high-impact HSLC events. Significance StatementEven when atmospheric instability is not optimal for severe convective storms, in some situations they can still occur, presenting increased challenges to forecasters. These marginal environments may occur at night or during the cool season, when people are less attuned to severe weather threats. Here, we use a sorting algorithm to classify different weather patterns accompanying such storms, and we distinguish which specific patterns and weather system features are most strongly associated with severe storms. Our goals are to increase situational awareness for forecasters and to improve understanding of the processes leading to severe convection in marginal environments.more » « less
-
Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.more » « less
-
Abstract This research attempts to use operational radar and satellite products to identify potential locations of quasi-linear convective system (QLCS) tornadogenesis, which can be difficult to predict. It is hypothesized that deep, discrete updrafts indicate portions of the QLCS capable of producing tornadoes, whereas shallower convection indicates more benign portions of the QLCS. To address this hypothesis, storm reports and storm surveys on 30–31 March 2022, during the second intensive observing period of the 2022 Propagation, Evolution, and Rotation in Linear Storms (PERiLS) field campaign, are used to identify locations of tornadoes within the QLCS. These tornado locations are then compared to representations of upper-tropospheric updrafts, namely, overshooting tops (OTs), which are identified with an algorithm using 1-min-resolution mesoscale sector data fromGOES-16Advanced Baseline Imager infrared brightness temperatures, and radar reflectivity cores aloft, identified with Multi-Radar Multi-Sensor (MRMS) 3D mosaic reflectivity products. Only a fraction (less than 30%) of tornadoes within the QLCS are associated with OTs, though over 85% of tornadoes are located near convective cores as indicated by cores of enhanced reflectivity at 9 km MSL. A numerical simulation of the event is also conducted using the Weather Research and Forecasting (WRF) Model which shows a strong relationship between simulated updraft intensity and reflectivity aloft. Given this apparent support of the hypothesis, the identification of updraft signatures within MRMS and high-resolution geostationary satellite data may ultimately help improve the identification of regions within QLCSs most likely to result in tornadoes.more » « less
-
null (Ed.)Abstract The Plains Elevated Convection at Night (PECAN) field project was designed to explain the evolution and structures of nocturnal mesoscale convective systems (MCSs) and relate them to specific mechanisms and environmental ingredients. The present work examines four of the strongest and best-organized PECAN cases, each numerically simulated at two different levels of complexity. The suite of simulations enables a longitudinal look at how nocturnal MCSs resemble (or differ from) more commonly studied diurnal MCSs. All of the simulations produce at least some surface outflow (“cold pools”), with stronger outflows occurring in environments with more CAPE and weaker near-ground stability. As these surface outflows emerge, the lifting of near-ground air occurs, causing each simulated nocturnal MCS to ultimately become “surface-based.” The end result in each simulation is a quasi-linear convective system (QLCS) that is most intense toward the downshear flank of its cold pool, with the classical appearance of many afternoon squall lines. This pathway of evolution occurs both in fully heterogeneous real-world-like simulations and horizontally homogeneous idealized simulations. One of the studied cases also exhibits a back-building “rearward off-boundary development” stage, and this more complex behavior is also well simulated in both model configurations. As a group, the simulations imply that a wide range of nocturnal MCS behaviors may be self-organized (i.e., not reliant on larger-scale features external to the convection).more » « less
An official website of the United States government
