This paper addresses the challenges of data privacy and computational efficiency in artificial intelligence (AI) models by proposing a novel hybrid model that combines homomorphic encryption (HE) with AI to enhance security while maintaining learning accuracy. The novelty of our model lies in the introduction of a new matrix transformation technique that ensures compatibility with both HE algorithms and AI model weight matrices, significantly improving computational efficiency. Furthermore, we present a first-of-its-kind mathematical proof of convergence for integrating HE into AI models using the adaptive moment estimation optimization algorithm. The effectiveness and practicality of our approach for training on encrypted data are showcased through comprehensive evaluations of well-known datasets for air pollution forecasting and forest fire detection. These successful results demonstrate high model performance, with nearly 1 R-squared for air pollution forecasting and 99% accuracy for forest fire detection. Additionally, our approach achieves a reduction of up to 90% in data storage and a tenfold increase in speed compared to models that do not use the matrix transformation method. Our primary contribution lies in enhancing the security, efficiency, and dependability of AI models, particularly when dealing with sensitive data.
more »
« less
Leveraging Perspective Transformation for Enhanced Pothole Detection in Autonomous Vehicles
Road conditions, often degraded by insufficient maintenance or adverse weather, significantly contribute to accidents, exacerbated by the limited human reaction time to sudden hazards like potholes. Early detection of distant potholes is crucial for timely corrective actions, such as reducing speed or avoiding obstacles, to mitigate vehicle damage and accidents. This paper introduces a novel approach that utilizes perspective transformation to enhance pothole detection at different distances, focusing particularly on distant potholes. Perspective transformation improves the visibility and clarity of potholes by virtually bringing them closer and enlarging their features, which is particularly beneficial given the fixed-size input requirement of object detection networks, typically significantly smaller than the raw image resolutions captured by cameras. Our method automatically identifies the region of interest (ROI)—the road area—and calculates the corner points to generate a perspective transformation matrix. This matrix is applied to all images and corresponding bounding box labels, enhancing the representation of potholes in the dataset. This approach significantly boosts detection performance when used with YOLOv5-small, achieving a 43% improvement in the average precision (AP) metric at intersection-over-union thresholds of 0.5 to 0.95 for single class evaluation, and notable improvements of 34%, 63%, and 194% for near, medium, and far potholes, respectively, after categorizing them based on their distance. To the best of our knowledge, this work is the first to employ perspective transformation specifically for enhancing the detection of distant potholes.
more »
« less
- Award ID(s):
- 2214830
- PAR ID:
- 10646154
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Journal of Imaging
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2313-433X
- Page Range / eLocation ID:
- 227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Designing effective emergency response management (ERM) systems to respond to incidents such as road accidents is a major problem faced by communities. In addition to responding to frequent incidents each day (about 240 million emergency medical services calls and over 5 million road accidents in the US each year), these systems also support response during natural hazards. Recently, there has been a consistent interest in building decision support and optimization tools that can help emergency responders provide more efficient and effective response. This includes a number of principled subsystems that implement early incident detection, incident likelihood forecasting and strategic resource allocation and dispatch policies. In this paper, we highlight the key challenges and provide an overview of the approach developed by our team in collaboration with our community partners.more » « less
-
null (Ed.)Accurately profiling potholes on road surfaces not only helps eliminate safety related concerns and improve commuting efficiency for drivers, but also reduces unnecessary maintenance cost for transportation agencies. In this paper, we propose a smartphone-based system that is capable of precisely estimating the length and depth of potholes, and introduce a holistic design on pothole data collection, profile aggregation and pothole warning and reporting. The proposed system relies on the built-in inertial sensors of vehicle-carried smartphones to estimate pothole profiles, and warn the driver about incoming potholes. Because of the difference in driving behaviors and vehicle suspension systems, a major challenge in building such system is how to aggregate conflicting sensory reports from multiple participating vehicles. To tackle this challenge, we propose a novel reliability-aware data aggregation algorithm called Reliability Adaptive Truth Discovery (RATD). It infers the reliability for each data source and aggregates pothole profiles in an unsupervised fashion. Our field test shows that the proposed system can effectively estimate pothole profiles, and the RATD algorithm significantly improves the profiling accuracy compared with popular data aggregation methods.more » « less
-
Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon.more » « less
-
Recently developed protein language models have enabled a variety of applications with the protein contextual embeddings they produce. Per-protein representations (each protein is represented as a vector of fixed dimension) can be derived via averaging the embeddings of individual residues, or applying matrix transformation techniques such as the discrete cosine transformation (DCT) to matrices of residue embeddings. Such protein-level embeddings have been applied to enable fast searches of similar proteins; however, limitations have been found; for example, PROST is good at detecting global homologs but not local homologs, and knnProtT5 excels for proteins with single domains but not multidomain proteins. Here, we propose a novel approach that first segments proteins into domains (or subdomains) and then applies the DCT to the vectorized embeddings of residues in each domain to infer domain-level contextual vectors. Our approach, called DCTdomain, uses predicted contact maps from ESM-2 for domain segmentation, which is formulated as adomain segmentationproblem and can be solved using arecursive cutalgorithm (RecCut in short) in quadratic time to the protein length; for comparison, an existing approach for domain segmentation uses a cubic-time algorithm. We show such domain-level contextual vectors (termed asDCT fingerprints) enable fast and accurate detection of similarity between proteins that share global similarities but with undefined extended regions between shared domains, and those that only share local similarities. In addition, tests on a database search benchmark show that the DCTdomain is able to detect distant homologs by leveraging the structural information in the contextual embeddings.more » « less
An official website of the United States government

