skip to main content


Title: A Reliability-Aware Vehicular Crowdsensing System for Pothole Profiling
Accurately profiling potholes on road surfaces not only helps eliminate safety related concerns and improve commuting efficiency for drivers, but also reduces unnecessary maintenance cost for transportation agencies. In this paper, we propose a smartphone-based system that is capable of precisely estimating the length and depth of potholes, and introduce a holistic design on pothole data collection, profile aggregation and pothole warning and reporting. The proposed system relies on the built-in inertial sensors of vehicle-carried smartphones to estimate pothole profiles, and warn the driver about incoming potholes. Because of the difference in driving behaviors and vehicle suspension systems, a major challenge in building such system is how to aggregate conflicting sensory reports from multiple participating vehicles. To tackle this challenge, we propose a novel reliability-aware data aggregation algorithm called Reliability Adaptive Truth Discovery (RATD). It infers the reliability for each data source and aggregates pothole profiles in an unsupervised fashion. Our field test shows that the proposed system can effectively estimate pothole profiles, and the RATD algorithm significantly improves the profiling accuracy compared with popular data aggregation methods.  more » « less
Award ID(s):
1737590 1652503
NSF-PAR ID:
10294399
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
3
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Failure time data of fielded systems are usually obtained from the actual users of the systems. Due to various operational preferences and/or technical obstacles, a large proportion of field data are collected as aggregate data instead of the exact failure times of individual units. The challenge of using such data is that the obtained information is more concise but less precise in comparison to using individual failure times. The most significant needs in modeling aggregate failure time data are the selection of an appropriate probability distribution and the development of a statistical inference procedure capable of handling data aggregation. Although some probability distributions, such as the Gamma and Inverse Gaussian distributions, have well-known closed-form expressions for the probability density function for aggregate data, the use of such distributions limits the applications in field reliability estimation. For reliability practitioners, it would be invaluable to use a robust approach to handle aggregate failure time data without being limited to a small number of probability distributions. This paper studies the application of phase-type (PH) distribution as a candidate for modeling aggregate failure time data. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters, and the confidence interval for the reliability estimate is also obtained. The simulation and numerical studies show that the robust approach is quite powerful because of the high capability of PH distribution in mimicking a variety of probability distributions. In the area of reliability engineering, there is limited work on modeling aggregate data for field reliability estimation. The analytical and statistical inference methods described in this work provide a robust tool for analyzing aggregate failure time data for the first time. 
    more » « less
  2. This paper focuses on the detection of cyber-attack on a communication channel and simultaneous radar health monitoring for a connected vehicle. A semi-autonomous adaptive cruise control (SA-ACC) vehicle is considered which has wireless communication with its immediately preceding vehicle to operate at small time-gap distances without creating string instability. However, the reliability of the wireless connectivity is critical for ensuring safe vehicle operation. The presence of two unknown inputs related to both sensor failure and cyber-attack seemingly poses a difficult estimation challenge. The dynamic system is first represented in descriptor system form. An observer with estimation error dynamics decoupled from the cyber-attack signal is developed. The performance of the observer is extensively evaluated in simulations. The estimation system is able to detect either a fault in the velocity measurement radar channel or a cyber-attack. Also, the proposed observer-based controller achieves resilient SA-ACC system under the cyber-attacks. The fundamental estimation algorithm developed herein can be extended in the future to enable cyber-attack detection in more complex connected vehicle architectures. 
    more » « less
  3. Abstract

    With the rapid development of metro systems, it has become increasingly important to study phenomena such as passenger flow distribution and passenger boarding behavior. It is difficult for existing methods to accurately describe actual situations and to extend to the whole metro system due to the limitations from parameter uncertainties in their mathematical models. In this article, we propose a passenger‐to‐train assignment model to evaluate the probabilities of individual passengers boarding each feasible train for both no‐transfer and one‐transfer situations. This model can be used to understand passenger flows and crowdedness. The input parameters of the model include the probabilities that the passengers take each train and the probability distribution of egress time, which is the time to walk to the tap‐out fare gate after alighting from the train. We present the likelihood method to estimate these parameters based on data from the automatic fare collection and automatic vehicle location systems. This method can construct several nonparametric density estimates without assuming the parametric form of the distribution of egress time. The EM algorithm is used to compute the maximum likelihood estimates. Simulation results indicate that the proposed estimates perform well. By applying our method to real data in Beijing metro system, we can identify different passenger flow patterns between peak and off‐peak hours.

     
    more » « less
  4. Abstract

    Three-dimensional (3D) bioprinting precisely deposits picolitre bioink to fabricate functional tissues and organs in a layer-by-layer manner. The bioink used for 3D bioprinting incorporates living cells. During printing, cells suspended in the bioink sediment to form cell aggregates through cell-cell interaction. The formation of cell aggregates due to cell sedimentation have been widely recognized as a significant challenge to affect the printing reliability and quality. This study has incorporated the active circulation into the bioink reservoir to mitigate cell sedimentation and aggregation. Force and velocity analysis were performed, and a circulation model has been proposed based on iteration algorithm with the time step for each divided region. It has been found that (a) the comparison of the cell sedimentation and aggregation with and without the active bioink circulation has demonstrated high effectiveness of active circulation to mitigate cell sedimentation and aggregation for the bioink with both a low cell concentration of 1 × 106cells ml−1and a high cell concentration of 5 × 106cells ml−1; and (b) the effect of circulation flow rate on cell sedimentation and aggregation has been investigated, showing that large flow rate results in slow increments in effectiveness. Besides, the predicted mitigation effectiveness percentages on cell sedimentation by the circulation model generally agrees well with the experimental results. In addition, the cell viability assessment at the recommended maximum flow rate of 0.5 ml min−1has demonstrated negligible cell damage due to the circulation. The proposed active circulation approach is an effective and efficient approach with superior performance in mitigating cell sedimentation and aggregation, and the resulting knowledge is easily applicable to other 3D bioprinting techniques significantly improving printing reliability and quality in 3D bioprinting.

     
    more » « less
  5. The Wire Flyer towed vehicle is a new platform able to collect high-resolution water column sections. The vehicle is motivated by a desire to effectively capture spatial structures at the submesoscale. The vehicle fills a niche that is not achieved by other existing towed and repeat profiling systems. The Wire Flyer profiles up and down along a ship-towed cable autonomously using controllable wings for propulsion. At ship speeds between 2 and 5 kt (1.02–2.55ms21), the vehicle is able to profile over prescribed depth bands down to 1000 m. The vehicle carries sensors for conductivity, temperature, depth, oxygen, turbidity, chlorophyll, pH, and oxidation reduction potential. During normal operations the vehicle is typically commanded to cover vertical regions between 300 and 400min height with profiles that repeat at kilometer spacing. The vertical profiling speed can be user specified up to 150mmin21. The high-density sampling capability at depths below the upper few hundred meters makes the vehicle distinct from other systems. During operations an acoustic modem is used to communicate with the vehicle to provide status information, data samples, and the ability to modify the sampling pattern. This paper provides an overview of the vehicle system, describes its operation, and presents results from several cruises. 
    more » « less