skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Reliable Provisioning of Low-Latency and High-Bandwidth Extended Reality Live Streams
The networking industry is offering new services leveraging recent technological advances in connectivity, storage, and computing such as mobile communications and edge computing. In this regard, extended reality, a term encompassing virtual reality, augmented reality, and mixed reality, can provide unprecedented user experience and pioneering service opportunities such as: live concerts, sports, and other events; interactive gaming and entertainment; immersive education, training, and demos. These services require high-bandwidth, low-latency, and reliable connections, and are supported by next-generation ultra-reliable and low-latency communications in the vision of 6G mobile communication systems. In this work, we devise a novel scheme, called backup from different data centers with multicast and adaptive bandwidth provisioning, to admit reliable, low-latency, and high-bandwidth extended reality live streams in next-generation networks. We consider network services where contents are non-cacheable and investigate how backup services can be offered by different data centers with multicast and adaptive bandwidth provisioning. Our proposed service-provisioning scheme provides protection not only against link failures in the physical network but also against computing and storage failures in data centers. We develop scalable algorithms for the service-provisioning scheme and evaluate their performance on various complex network instances in a dynamic environment. Numerical results show that, compared to conventional service-provisioning schemes such as those seeking backup services from the same data center, our proposed service-provisioning scheme efficiently utilizes network resources, ensures higher reliability, and guarantees low latency; hence, it is highly suitable for extended reality live streams.  more » « less
Award ID(s):
2210384
PAR ID:
10646193
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Journal on Selected Areas in Communications
Volume:
43
Issue:
5
ISSN:
0733-8716
Page Range / eLocation ID:
1755 to 1766
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers. 
    more » « less
  2. null (Ed.)
    Over the last 20 years, mobile computing has evolved to encompass a wide array of increasingly data-rich applications. Many of these applications were enabled by the Cloud computing revolution, which commoditized server hardware to support vast numbers of mobile users from a few large, centralized data centers. Today, mobile's next stage of evolution is spurred by interest in emerging technologies such as Augmented and Virtual Reality (AR/VR), the Internet of Things (IoT), and Autonomous Vehicles. New applications relying on these technologies often require very low latency response times, increased bandwidth consumption, and the need to preserve privacy. Meeting all of these requirements from the Cloud alone is challenging for several reasons. First, the amount of data generated by devices can quickly saturate the bandwidth of backhaul links to the Cloud. Second, achieving low-latency responses for making decisions on sensed data becomes increasingly difficult the further mobile devices are from centralized Cloud data centers. And finally, regulatory or privacy restrictions on the data generated by devices may require that such data be kept locally. For these reasons, enabling next-generation technologies requires us to reconsider the current trend of serving applications from the Cloud alone. 
    more » « less
  3. Next-generation distributed computing networks (e.g., edge and fog computing) enable the efficient delivery of delay-sensitive, compute-intensive applications by facilitating access to computation resources in close proximity to end users. Many of these applications (e.g., augmented/virtual reality) are also data-intensive: in addition to user-specific (live) data streams, they require access to shared (static) digital objects (e.g., im-age database) to complete the required processing tasks. When required objects are not available at the servers hosting the associated service functions, they must be fetched from other edge locations, incurring additional communication cost and latency. In such settings, overall service delivery performance shall benefit from jointly optimized decisions around (i) routing paths and processing locations for live data streams, together with (ii) cache selection and distribution paths for associated digital objects. In this paper, we address the problem of dynamic control of data-intensive services over edge cloud networks. We characterize the network stability region and design the first throughput-optimal control policy that coordinates processing and routing decisions for both live and static data-streams. Numerical results demonstrate the superior performance (e.g., throughput, delay, and resource consumption) obtained via the novel multi-pipeline flow control mechanism of the proposed policy, compared with state-of-the-art algorithms that lack integrated stream processing and data distribution control. 
    more » « less
  4. With the rapid advancement of edge computing and network function virtualization, it is promising to provide flexible and low-latency network services at the edge. However, due to the vulnerability of edge services and the volatility of edge computing system states, i.e., service request rates, failure rates, and resource prices, it is challenging to minimize the online service cost while providing the availability guarantee. This paper considers the problem of online virtual network function backup under availability constraints (OVBAC) for cost minimization in edge environments. We formulate the problem based on the characteristics of the volatility system states derived from real-world data and show the hardness of the formulated problem. We use an online backup deployment scheme named Drift-Plus-Penalty (DPP) with provable near-optimal performance for the AVBAC problem. In particular, DPP needs to solve an integer programming problem at the beginning of each time slot. We propose a dynamic programming-based algorithm that can optimally solve the problem in pseudo-polynomial time. Extensive real-world data-driven simulations demonstrate that DPP significantly outperforms popular baselines used in practice. 
    more » « less
  5. As we progress from 5G to emerging 6G wireless, the spectrum of cellular communication services is set to broaden significantly, encompassing real-time remote healthcare applications and sophisticated smart infrastructure solutions, among others. This expansion brings to the forefront a diverse set of service requirements, underscoring the challenges and complexities inherent in next-generation networks. In the realm of 5G, Enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC) have been pivotal service categories. As we venture into the 6G era, these foundational use cases will evolve and embody additional performance criteria, further diversifying the network service portfolio. This evolution amplifies the necessity for dynamic and efficient resource allocation strategies capable of balancing the diverse service demands. In response to this need, we introduce the Intelligent Dynamic Resource Allocation and Puncturing (IDRAP) framework. Leveraging Deep Reinforcement Learning (DRL), IDRAP is designed to balance between the bandwidth-intensive requirements of eMBB services and the latency and reliability needs of URLLC users. The performance of IDRAP is evaluated and compared against other resource management solutions, including Intelligent Dynamic Resource Slicing (IDRS), Policy Gradient Actor-Critic Learning (PGACL), System-Wide Tradeoff Scheduling (SWTS), Sum-Log, and Sum-Rate.The results show an improved Service Satisfaction Level (SSL) for eMBB users while maintaining the essential SSL threshold for URLLC services. 
    more » « less