Abstract We propose a Bayesian inference framework to predict the merger history of LIGO-Virgo binary black holes (BHs), whose binary components may have undergone hierarchical mergers in the past. The framework relies on numerical relativity predictions for the mass, spin, and kick velocity of the remnant BHs. This proposed framework computes the masses, spins, and kicks imparted to the remnant of the parent binaries, given the initial masses and spin magnitudes of the binary constituents. We validate our approach by performing an “injection study” based on a constructed sequence of hierarchically formed binaries. Noise is added to the final binary in the sequence, and the parameters of the “parent” and “grandparent” binaries in the merger chain are then reconstructed. This method is then applied to three GWTC-3 events: GW190521, GW200220_061928, and GW190426_190642. These events were selected because at least one of the binary companions lies in the putative pair-instability supernova mass gap, in which stellar processes alone cannot produce BHs. Hierarchical mergers offer a natural explanation for the formation of BHs in the pair-instability mass gap. We use the backward evolution framework to predict the parameters of the parents of the primary companion of these three binaries. For instance, the parent binary of GW190521 has masses and within the 90% credible interval. Astrophysical environments with escape speeds ≥100 km s−1are preferred sites to host these events. Our approach can be readily applied to future high-mass gravitational wave events to predict their formation history under the hierarchical merger assumption.
more »
« less
This content will become publicly available on November 1, 2026
Confronting general relativity with principal component analysis: Simulations and results from GWTC-3 events
We present a comprehensive assessment of multiparameter tests of general relativity (GR) in the inspiral regime of compact binary coalescences using principal component analysis (PCA). Our analysis is based on an extensive set of simulated gravitational-wave (GW) signals, including both general relativistic and non-GR sources, injected into zero-noise data colored by the noise power spectral densities of the LIGO and Virgo GW detectors at their designed sensitivities. We evaluate the performance of PCA-based methods in the context of two established frameworks: and . For GR-consistent signals, we find that PCA enables stringent constraints on potential deviations from GR, even in the presence of multiple free parameters. Applying the method to simulated signals that explicitly violate GR, we demonstrate that PCA is effective at identifying such deviations. We further test the method using numerical relativity waveforms of eccentric binary black hole systems and show that missing physical effects—such as orbital eccentricity—can lead to apparent violations of GR if not properly included in the waveform models used for analysis. Finally, we apply our PCA-based test to selected real gravitational-wave events from GWTC-3, including GW190814 and GW190412. We present joint constraints from selected binary black hole events in GWTC-3, finding that the 90% credible bound on the most informative PCA parameter is in the framework and in the framework, both of which are consistent with GR. These results highlight the sensitivity and robustness of the PCA-based approach and demonstrate its readiness for application to future observational data from the fourth observing runs of LIGO, Virgo, and KAGRA.
more »
« less
- PAR ID:
- 10646289
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 112
- Issue:
- 10
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5M⊙and 1.2–2.0M⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.more » « less
-
Black holes (BHs) with masses between , produced by a binary neutron star (BNS) merger, can further pair up with a neutron star or BH and merge again within a Hubble time. However, the astrophysical environments in which this can happen and the rate of such mergers are open questions in astrophysics. Gravitational waves may play an important role in answering these questions. In this context, we discuss the possibility that the primary of the recent LIGO-Virgo-KAGRA binary GW230529_181500 (GW230529, in short) is the product of a previous BNS merger. Invoking numerical relativity (NR)-based fitting formulas that map the binary constituents’ masses and tidal deformabilities to the mass, spin, and kick velocity of the remnant BH, we investigate the potential parents of GW230529’s primary. Our calculations using NR fits based on BNS simulations reveal that the remnant of a high-mass BNS merger similar to GW190425 is consistent with the primary of GW230529. This argument is further strengthened by the gravitational wave-based merger rate estimation of GW190425-like and GW230529-like populations. We show that around 18% (median) of the GW190425-like remnants could become the primary component in GW230529-like mergers. The dimensionless tidal deformability parameter of the heavier neutron star in the parent binary is constrained to at 90% credibility. Using estimates of the gravitational-wave kick imparted to the remnant, we also discuss the astrophysical environments in which these types of mergers can take place and the implications for their future observations.more » « less
-
Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR.more » « less
-
The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses and , and small spins (90% credibility) and negligible eccentricity . Postmerger data excluding the peak region are consistent with the dominant quadrupolar mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility.more » « less
An official website of the United States government
