skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Where is tree-level string theory?
A<sc>bstract</sc> We investigate the space of consistent tree-level extensions of the maximal supergravities in ten dimensions. We parametrize theory space by the first few EFT coefficients and by the on-shell coupling of the lightest massive state, and impose on these data the constraints that follow from 2 → 2 supergraviton scattering. While Type II string theory lives strictly inside the allowed region, we uncover a novel extremal solution of the bootstrap problem, which appears to contain asinglelinear Regge trajectory, with the same slope as string theory. We repeat a similar analysis for supergluon scattering, where we find instead a continuous family of extremal solutions with a single Regge trajectory of varying slope.  more » « less
Award ID(s):
2210533
PAR ID:
10646415
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We use effective string theory to study mesons with large spinJin largeNcQCD as rotating open strings. In the first part of this work, we formulate a consistent effective field theory (EFT) for open spinning strings with light quarks. Our EFT provides a consistent treatment of the endpoints’ singularities that arise in the massless limit. We obtain results, in a systematic 1/Jexpansion, for the spectrum of the leading and daughter Regge trajectories. Interestingly, we find that the redshift factor associated with the quarks’ acceleration implies that the applicability regime of the EFT is narrower compared to that of static flux tubes. In the second part of this work, we discuss several extensions of phenomenological interests, including mesons with heavy quarks, the quarks’ spin and the daughter Regge trajectories associated with the worldsheet axion, a massive string mode identified in lattice simulations of 4dflux tubes. We compare our predictions with 4dQCD spectroscopy data, and suggest potentialstringyinterpretations of the observed mesons. We finally comment on the relation between the EFT spectrum and the Axionic String Ansatz, a recently proposed characterization of the spectrum of Yang-Mills glueballs. 
    more » « less
  2. A bstract Recent lattice results strongly support the Axionic String Ansatz (ASA) for quantum numbers of glueballs in 3D Yang-Mills theory. The ASA treats glueballs as closed bosonic strings. The corresponding worldsheet theory is a deformation of the minimal Nambu-Goto theory. In order to understand better the ASA strings and as a first step towards a perturbative calculation of the glueball mass splittings we compare the ASA spectrum to the closed effective string theory. Namely, we model glueballs as excitations around the folded rotating rod solution with a large angular momentum J . The resulting spectrum agrees with the ASA in the regime of validity of the effective theory, i.e., in the vicinity of the leading Regge trajectory. In particular, closed effective string theory correctly predicts that only glueballs of even spin J show up at the leading Regge trajectory. Interestingly though, the closed effective string theory overestimates the number of glueball states far above the leading Regge trajectory. 
    more » « less
  3. A<sc>bstract</sc> We use insights from string field theory to analyze and cure the divergences in the cylinder diagram in minimal string theory with both boundaries lying on a ZZ brane. We focus on theories with worldsheet matter consisting of the (2, p) minimal model plus Liouville theory, with total central charge 26, together with the usualbc-ghosts. The string field theory procedure gives a finite, purely imaginary normalization constant for non-perturbative effects in minimal string theory, or doubly non-perturbative effects in JT gravity. We find precise agreement with the prediction from the dual double-scaled one-matrix integral. We also make a few remarks about the extension of this result to the more general (p′, p) minimal string. 
    more » « less
  4. A<sc>bstract</sc> We examine the thermodynamics of a near-extremal Kerr black hole, and demonstrate that the geometry behaves as an ordinary quantum system with a vanishingly small degeneracy at low temperatures. This is in contrast with the classical analysis, which instead predicts a macroscopic entropy for the extremal Kerr black hole. Our results follow from a careful analysis of the gravitational path integral. Specifically, the low temperature canonical partition function behaves as$$ Z\sim {T}^{\frac{3}{2}}\ {e}^{S_0+c\log {S}_0} $$ Z T 3 2 e S 0 + c log S 0 , withS0the classical degeneracy andca numerical coefficient we compute. This is in line with the general expectations for non-supersymmetric near-extremal black hole thermodynamics, as has been clarified in the recent past, although cases without spherical symmetry have not yet been fully analyzed until now. We also point out some curious features relating to the rotational zero modes of the near-extremal Kerr black hole background that affects the coefficientc. This raises a puzzle when considering similar black holes in string theory. Our results generalize to other rotating black holes, as we briefly exemplify. 
    more » « less
  5. A<sc>bstract</sc> We compute the ZZ annulus one-point function of the cosmological constant operator in non-critical string theory, regulating divergences from the boundaries of moduli space using string field theory. We identify a subtle issue in a previous analysis of these divergences, which was done in the context of thec= 1 string theory, and where it had led to a mismatch with the prediction from the dual matrix quantum mechanics. After fixing this issue, we find a precise match to the expected answer in both thec< 1 andc= 1 cases. We also compute the disk two-point function, which is a quantity of the same order, and show that it too matches with the general prediction. 
    more » « less