skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NLO SMEFT electroweak corrections to Higgs boson decays to four leptons in the narrow width approximation
Some of the most precise measurements of Higgs boson couplings are from the Higgs decays to 4 leptons, where deviations from the Standard Model predictions can be quantified in the framework of the Standard Model effective field theory (SMEFT). In this work, we present a complete next-to-leading order (NLO) SMEFT electroweak calculation of the rate for H + Z which we combine with the NLO SMEFT result for Z + to obtain the NLO rate for the H 4 lepton process in the narrow width approximation. The NLO calculation provides sensitivity to a wide range of SMEFT operators that do not contribute to the rate at lowest order and demonstrates the importance of including correlations between the effects of different operators when extracting limits on SMEFT parameters. We show that the extraction of the Higgs trilinear coupling from the decay H + Z , Z + in the narrow width approximation strongly depends on the contributions of other operators that first occur at NLO.  more » « less
Award ID(s):
2210533
PAR ID:
10646500
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
1
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The violation of the Lam-Tung relation in the high- p T region of the Drell-Yan process at the LHC presents a longstanding discrepancy with the standard model prediction at O ( α s 3 ) accuracy. In this paper, we employed a model-independent analysis to investigate this phenomenon within the framework of the standard model effective field theory (SMEFT). Our findings revealed that the leading contributions from SMEFT to this violation appear at the 1 / Λ 4 order with O ( α s ) accuracy in quantum chromodynamics (QCD) interaction. Notably, we demonstrated that the quadratic effect of dimension-6 dipole operators, associated with the Z boson, dominates the breaking effects induced by various dimension-6 and dimension-8 operators. This provides a possible explanation for the observed discrepancy with the Standard Model predictions at the LHC. Furthermore, the breaking effects could also serve as a powerful tool for constraining Z -boson dipole interactions, highlighting their importance among potential sources of new physics in the Drell-Yan process. Published by the American Physical Society2025 
    more » « less
  2. Abstract A measurement of off-shell Higgs boson production in the H Z Z 4 decay channel is presented. The measurement uses 140 fb−1of proton–proton collisions at s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the Z Z 4 decay channel at 68% CL is 0.87 0.54 + 0.75 ( 1.00 0.95 + 1.04 ). The evidence for off-shell Higgs boson production using the Z Z 4 decay channel has an observed (expected) significance of 2.5σ(1.3σ). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5σ. When combined with the most recent ATLAS measurement in the Z Z 2 2 ν decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7σ(2.4σ). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is 4.3 1.9 + 2.7 ( 4.1 3.4 + 3.5 ) MeV. 
    more » « less
  3. A search for the nonresonant production of Higgs boson pairs in the H H b b ¯ τ + τ channel is performed using 140 fb 1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifier κ λ and of the quartic H H V V ( V = W , Z ) coupling modifier κ 2 V . No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit μ H H < 5.9 ( 3.3 ) is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of 3.1 < κ λ < 9.0 ( 2.5 < κ λ < 9.3 ) and 0.5 < κ 2 V < 2.7 ( 0.2 < κ 2 V < 2.4 ), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  4. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘<#comment/> →<#comment/> 4 f 7 ( 8 S ∘<#comment/> ) 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 state were found to be A ( 151 ) = −<#comment/> 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = −<#comment/> 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less
  5. The ratio of branching fractions R ( D * ) = B ( B ¯ D * τ ν ¯ τ ) / B ( B ¯ D * ν ¯ ) , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of 189 fb 1 at the SuperKEKB asymmetric-energy e + e collider. Data is collected at the ϒ ( 4 S ) resonance, and one B meson in the ϒ ( 4 S ) B B ¯ decay is fully reconstructed in hadronic decay modes. The accompanying signal B meson is reconstructed as B ¯ D * τ ν ¯ τ using leptonic τ decays. The normalization decay, B ¯ D * ν ¯ , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields R ( D * ) = 0.262 0.039 + 0.041 ( stat ) 0.032 + 0.035 ( syst ) . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024 
    more » « less