Materials with strong second-order ( ) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss materials remains challenging and limits the threshold power of on-chip OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power ( ) is 400 times lower than that in previous integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks.
more »
« less
Spectroscopic study of the 4 f 7 6 s 2 8 S 7/2∘−4 f 7 ( 8 S ∘ )6 s 6 p ( 1 P ∘ ) 8 P 9/2 transition in neutral europium-151 and europium-153: absolute frequency and hyperfine structure
We report on spectroscopic measurements on the transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.
more »
« less
- PAR ID:
- 10370777
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America B
- Volume:
- 39
- Issue:
- 10
- ISSN:
- 0740-3224; JOBPDE
- Format(s):
- Medium: X Size: Article No. 2596
- Size(s):
- Article No. 2596
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.more » « less
-
We demonstrate the DC-Kerr effect in plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) and use it to demonstrate a third order nonlinear susceptibility, , as high as . We employ spectral shift versus applied voltage measurements in a racetrack resonator as a tool to characterize the nonlinear susceptibilities of these films. In doing so, we demonstrate a larger than that of silicon and argue that PECVD SRN can provide a versatile platform for employing optical phase shifters while maintaining a low thermal budget using a deposition technique readily available in CMOS process flows.more » « less
-
We perform single-shot frequency domain holography to measure the ultrafast spatio-temporal phase change induced by the optical Kerr effect and plasma in flexible Corning Willow Glass during femtosecond laser–matter interactions. We measure the nonlinear index of refraction ( ) to be and visualize the plasma formation and recombination on femtosecond time scales in a single shot. To compare with the experiment, we carry out numerical simulations by solving the nonlinear envelope equation.more » « less
-
Here, we report -based optical parametric oscillation (OPO) with widely separated signal–idler frequencies from crystalline aluminum nitride microrings pumped at . By tailoring the width of the microring, OPO reaching toward the telecom and mid-infrared bands with a frequency separation of 64.2 THz is achieved. While dispersion engineering through changing the microring width is capable of shifting the OPO sideband by , the OPO frequency can also be agilely tuned in the ranges of 1 and 0.1 THz, respectively, by shifting the pump wavelength and controlling the chip’s temperature. At high pump powers, the OPO sidebands further evolve into localized frequency comb lines. Such large-frequency-shift OPO with flexible wavelength tunability will lead to enhanced chip-scale light sources.more » « less