Resident Energy Experiences in a Low-Income Multifamily Community (Detroit, MI): A Study of Energy Consumption, Health, and Quality of Life
- Award ID(s):
- 1952038
- PAR ID:
- 10646508
- Publisher / Repository:
- ACEEE Summer Study on Energy Efficiency in Buildings
- Date Published:
- Format(s):
- Medium: X
- Location:
- Pacific Grove, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Chronis, A. (Ed.)Traditional building energy simulation tools often assess performance as a function of the unique climate, physical characteristics, and operational parameters that define specific buildings and communities, planned or existing. This paper presents the results of a sensitivity analysis on the input parameters(relating to both the building and climate) that affect the annual energy consumption loads of an existing residential neighborhood in the U.S. Midwest over the anticipated service life of its buildings using the Urban Modeling Interface (umi). Accordingly, first, the effect of multiple building construction characteristic packages and inclusion of outdoor vegetation, are investigated under typical meteorological climate conditions. Afterwards, since typical climate conditions may not adequately describe the potential extreme conditions that will be encountered over the entire service life of these buildings, alternative weather datasets were also utilized in the sensitivity analysis. The study’s findings suggest that cooling loads are expected to increase dramatically over the next five decades, both due to changes in the climate and the more wide-spread use of air-conditioning units. Since the results showed that trees can effectively reduce cooling loads by up to 7%, it is recommended that urban vegetation should be considered as an effective adaptation measure for facing the growing cooling demands.more » « less
-
In the current grid, power is available at all times, to all users, indiscriminately. This makes the grid vulnerable to sporadic demands and much effort has been invested to mitigate their effect. We offer here a digital approach to power distribution: an energy-on-demand approach in which the user initiates an energy request to the server of the energy provider before receiving the energy. Considering a micro-grid with a mix of generators (sustainable and other sources), the server optimizes the entire power network before granting the energy requests, fully or partially. The energy is packetized and is routed to the user's address by an array of switches. For example, in an office building, the energy provider may queue energy requests by some air-condition units and grant these requests later. During recovery from a blackout, pockets of instability may be isolated by their unusual energy demands. In its simplest form, this network can be realized by overlaying an auxiliary (control, or, data) network on top of an energy delivery network and coupling the two through an array of addressable digital power switches. In assessing this approach, we are concentrating in this paper on the management of energy requests by using statistical models. An energy network with a limited channel capacity and the optimal path for energy flow in a standard IEEE 39 bus are considered.more » « less
An official website of the United States government

