Abstract In‐stream wood structures, such as single logs, river steps, and debris dams, are known to drive hyporheic flow, defined as the flow that goes into the subsurface region and then back to the free‐flowing surface water. The hyporheic flow plays an important role in regulating water quality and biogeochemical cycles in rivers. Here, we investigated the impact of a channel‐spanning porous log jam, representing piles of wood logs, on hyporheic flow through a combination of direct visualization and theories. Specifically, we developed a method using refractive index‐matched sediment to directly visualize the hyporheic flow around and below a porous log jam, formed by piles of cylindrical rods, in a laboratory flume. We tracked the velocity of a fluorescent dye moving through the transparent sediment underneath the log jam. In addition, we measured the water surface profile and the spatially varying flow velocity near the log jam. Our results show that the normalized log jam‐induced hyporheic flux remained smaller than 10% at Froude numbers () below 0.06 and increased by a factor of five with increasing at . We combined the mass and momentum conservation equations of surface flow with Darcy's equation to explain the dependency of the log jam‐induced hyporheic flux on . Further, we observed that at , the water surface dropped noticeably and the turbulent kinetic energy increased immediately on the downstream side of the log jam. These findings will facilitate future quantification of hyporheic flow caused by channel‐spanning porous log jams.
more »
« less
Experimental and Numerical Investigation on the Impact of Emergent Vegetation on the Hyporheic Exchange
Abstract Hyporheic exchange leads to the transfer of gases, solutes, and fine particles across the sediment‐water interface, playing a critical role in biogeochemical cycles and pollutant transport in aquatic environments. While in‐channel vegetation has been recognized to enhance hyporheic exchange, the mechanisms remain poorly understood. Here, we investigated how an emergent vegetation canopy impacts hyporheic exchange using refractive index‐matched flume experiments and coupled numerical simulations. Our results show that at the same mean surface flow velocity, vegetation increases the hyporheic exchange velocity by four times compared to the non‐vegetated channel. However, the hyporheic exchange velocity does not increase further with increasing vegetation density. In addition, our results show that the hyporheic exchange velocity scales with the square root of sediment permeability. Our findings provide a predictive framework for hyporheic exchange in vegetated channels with varying vegetation densities and sediment permeabilities and could guide the future design of environmental management and restoration projects using vegetation.
more »
« less
- Award ID(s):
- 2209591
- PAR ID:
- 10646632
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 61
- Issue:
- 10
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In‐channel wood, a critical component of forested rivers, has the capacity to enhance hyporheic flow. This process facilitates the continuous exchange of gases, solutes, and nutrients across the sediment‐water interface, regulating pollutant transport and biogeochemical cycles in rivers. When two wood structures are in close proximity, the hyporheic flows induced by each log can interact, yet such effects remain largely uncharacterized. In this study, we investigated the impact of two in‐line channel‐spanning logs with a vertical gap above the sediment‐water interface on hyporheic flow through laboratory experiments conducted under various conditions. Specifically, we measured water surface profiles, surface flow fields, and hyporheic flow fields around logs with different center‐to‐center distances (). Our results demonstrated that when the center‐to‐center distance between two logs was less than 10 times the log diameter, the wakes of the two logs interfered with each other, resulting in a decrease in both hyporheic flow rates and the difference in water surface elevation. Furthermore, we demonstrated the relationship between the pattern of log‐induced hyporheic flow and the surface flow regime. Our results suggest that the hyporheic flow pattern induced by logs can be inferred from measurements of the surface flow patterns. Our findings will contribute to an improved estimation of hyporheic flow induced by logs distributed along river channels.more » « less
-
Abstract In streams where water temperatures stress native biota, management of riparian shade or hyporheic exchange are both considered viable management strategies for reducing the peaks of daily and seasonal stream channel temperature cycles. Although shade and hyporheic exchange may have similar effects on stream temperatures, their mechanisms differ. Improved understanding of the heat‐exchange mechanisms influenced by shade and hyporheic exchange will aid in the appropriate application of either stream temperature management strategy. To illustrate a conceptual model highlighting shade as ‘thermal insulation’ and hyporheic exchange imparting ‘thermal capacitance’ to a stream reach, we conducted an in‐silico simulation modelling experiment increasing shade or hyporheic exchange parameters on an idealized, hypothetical stream. We assessed the potential effects of increasing shade or hyporheic exchange on a stream reach using an established process‐based heat‐energy budget model of stream‐atmosphere heat exchange and incorporated an advection‐driven hyporheic heat exchange routine. The model tracked heat transport through the hyporheic zone and exchange with the stream channel, while including the effects of hyporheic water age distribution on upwelling hyporheic temperatures. Results showed that shade and hyporheic exchange similarly damped diurnal temperature cycles and differentially altered seasonal cycles of our theoretical stream. In winter, hyporheic exchange warmed simulated channel temperatures whereas shade had little effect. In summer, both shade and hyporheic exchange cooled channel temperatures, though the effects of shade were more pronounced. Our simple‐to‐grasp analogies of ‘thermal insulation’ for shade effects and ‘thermal capacitance’ for hyporheic exchange effects on stream temperature encourage more accurate conceptualization of complex, dynamic heat exchange processes among the atmosphere, stream channel, and alluvial aquifer.more » « less
-
Abstract Hyporheic exchange has the potential to significantly influence river temperatures in regions of continuous permafrost under low‐flow conditions given the strong thermal gradients that exist in river bed sediments. However, there is limited understanding of the impacts of hyporheic exchange on Arctic river temperatures. To address this knowledge gap, heat fluxes associated with hyporheic exchange were estimated in a fourth‐order Arctic river using field observations coupled with a river temperature model that accounts for hyporheic exchange influences. Temperature time series and tracer study solute breakthrough curves were measured in the main channel and river bed at multiple locations and depths to characterize hyporheic exchange and provide parameter bounds for model calibration. Model results for low‐flow periods from 3 years indicated that hyporheic exchange contributed up to 27% of the total river energy balance, reduced the main channel diel temperature range by up to 1.7 °C, and reduced mean daily temperatures by up to 0.21 °C over a 13.1‐km study reach. These influences are due to main channel heat loss during the day and gain at night via hyporheic exchange and heat loss from the hyporheic zone to the ground below via conduction. Main channel temperatures were found to be sensitive to simulated changes in ground temperatures due to changes in hyporheic exchange heat flux and deeper ground conduction. These results suggest that the moderating influence of hyporheic exchange could be reduced if ground temperatures warm in response to projected increases in permafrost thaw below rivers.more » « less
-
Groundwater-surface water interaction (hyporheic exchange) is critical in numerous hydrogeochemical processes; however, hyporheic exchange is difficult to characterize due to the various spatial (e.g., sedimentary architecture) and temporal (e.g., stage fluctuations) variables that influence it. This interdisciplinary study brings forth novel insights by integrating various methodologies including geophysical surveys, physical and chemical sediment characterization, and water chemistry analysis to explore the interplay of the numerous facets governing hyporheic zone processes within a compound bar deposit. The findings reveal distinct sedimentary facies and geochemical zones within the compound bar, driven by the sedimentary architecture. Cross-bar channel fills are identified as critical structures influencing hydrogeochemical dynamics, acting as baffles to groundwater flow and modulating nutrient transformations. Geophysical imaging and hydrogeochemical analyses highlight the complex interplay between sediment characteristics and subsurface hydraulic connectivity, emphasizing the role of sediment heterogeneity in controlling hyporheic exchange and solute mixing. The study concludes that sediment heterogeneity, particularly the presence of cross-bar channel fills, plays a pivotal role in the hydrogeochemical dynamics of the hyporheic zone. These structures significantly influence hyporheic flow paths, solute residence times, and nutrient cycling, underscoring the necessity to consider the fine-scale sedimentary architecture in models of hyporheic exchange. The findings contribute to a deeper understanding of riverine ecosystem processes, offering insights that can inform management strategies for water quality and ecological integrity.more » « less
An official website of the United States government
