High-resolution Vision-Language Models (VLMs) are widely used in multimodal tasks to enhance accuracy by preserving detailed image information. However, these models often generate an excessive number of visual tokens due to the need to encode multiple partitions of a high-resolution image input. Processing such a large number of visual tokens poses significant computational challenges, particularly for resource-constrained commodity GPUs. To address this challenge, we propose High-Resolution Early Dropping (HiRED), a plug-and-play token-dropping method designed to operate within a fixed token budget. HiRED leverages the attention of CLS token in the vision transformer (ViT) to assess the visual content of the image partitions and allocate an optimal token budget for each partition accordingly. The most informative visual tokens from each partition within the allocated budget are then selected and passed to the subsequent Large Language Model (LLM). We showed that HiRED achieves superior accuracy and performance, compared to existing token-dropping methods. Empirically, HiRED-20% (i.e., a 20% token budget) on LLaVA-Next-7B achieves a 4.7x increase in token generation throughput, reduces response latency by 78%, and saves 14% of GPU memory for single inference on an NVIDIA TESLA P40 (24 GB). For larger batch sizes (e.g., 4), HiRED-20% prevents out-of-memory errors by cutting memory usage by 30%, while preserving throughput and latency benefits.
more »
« less
This content will become publicly available on June 11, 2026
RandAR: Decoder-only Autoregressive Visual Generation in Random Orders
We introduce RandAR, a decoder-only visual autoregressive (AR) model capable of generatng images in arbitrary token orders. Unlike previous decoder-only AR models that rely on a predefined generation order, RandAR removes this inductive bias, unlocking new capabilities in decoder-only generation. Our essential design enabling random order is to insert a "position instruction token" before each image token to be predicted, representing the spatial location of the next image token. Trained on randomly permuted token sequences -- a more challenging task than fixed-order generation, RandAR achieves comparable performance to conventional raster-order counterpart. More importantly, decoder-only transformers trained from random orders acquire new capabilities. For the efficiency bottleneck of AR models, RandAR adopts parallel decoding with KV-Cache at inference time, enjoying 2.5x acceleration without sacrificing generation quality. Additionally, RandAR supports in-painting, outpainting and resolution extrapolation in a zero-shot manner.We hope RandAR inspires new directions for decoder-only visual generation models and broadens their applications across diverse scenarios. Our project page is at https://rand-ar.github.io/.
more »
« less
- Award ID(s):
- 1955864
- PAR ID:
- 10646691
- Publisher / Repository:
- IEEE / CVF CVPR 2025
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution.more » « less
-
Paragraph-style image captions describe diverse aspects of an image as opposed to the more common single-sentence captions that only provide an abstract description of the image. These paragraph captions can hence contain substantial information of the image for tasks such as visual question answering. Moreover, this textual information is complementary with visual information present in the image because it can discuss both more abstract concepts and more explicit, intermediate symbolic information about objects, events, and scenes that can directly be matched with the textual question and copied into the textual answer (i.e., via easier modality match). Hence, we propose a combined Visual and Textual Question Answering (VTQA) model which takes as input a paragraph caption as well as the corresponding image, and answers the given question based on both inputs. In our model, the inputs are fused to extract related information by cross-attention (early fusion), then fused again in the form of consensus (late fusion), and finally expected answers are given an extra score to enhance the chance of selection (later fusion). Empirical results show that paragraph captions, even when automatically generated (via an RL-based encoder-decoder model), help correctly answer more visual questions. Overall, our joint model, when trained on the Visual Genome dataset, significantly improves the VQA performance over a strong baseline model.more » « less
-
This work introduces a transformer-based image and video tokenizer leveraging Binary Spherical Quantization (BSQ). The method projects high-dimensional visual embeddings onto a lower-dimensional hypersphere followed by binary quantization. BSQ offers three key benefits: (1) parameter efficiency without requiring an explicit codebook, (2) scalability to arbitrary token dimensions, and (3) high compression capability—up to 100× compression of visual data with minimal distortion. The tokenizer architecture includes a transformer encoder-decoder with block-wise causal masking to handle variable-length video inputs. The resulting model, BSQ-ViT, achieves state-of-the-art visual reconstruction performance on image and video benchmarks while delivering 2.4× higher throughput compared to previous best methods. Additionally, BSQ-ViT supports video compression via autoregressive priors for adaptive arithmetic coding, achieving results comparable to leading video compression standards. Furthermore, it enables masked language models to achieve competitive image synthesis quality relative to GAN- and diffusion-based approaches.more » « less
-
Discrete diffusion has achieved state-of-the-art performance, outperforming or approaching autoregressive models on standard benchmarks. In this work, we introduce Discrete Diffusion with Planned Denoising (DDPD), a novel framework that separates the generation process into two models: a planner and a denoiser. At inference time, the planner selects which positions to denoise next by identifying the most corrupted positions in need of denoising, including both initially corrupted and those requiring additional refinement. This plan-and-denoise approach enables more efficient reconstruction during generation by iteratively identifying and denoising corruptions in the optimal order. DDPD outperforms traditional denoiser-only mask diffusion methods, achieving superior results on language modeling benchmarks such as text8, OpenWebText, and token-based image generation on ImageNet 256×256. Notably, in language modeling, DDPD significantly reduces the performance gap between diffusion-based and autoregressive methods in terms of generative perplexity.more » « less
An official website of the United States government
