skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 13, 2026

Title: Mass Density and Wind Perturbations in the High‐Latitude Thermosphere
Abstract This work investigates mesoscale structures in the northern high‐latitude thermosphere using an ascending‐descending accelerometry (ADA) technique to determine whether observed in‐track acceleration perturbations are influenced by in‐track winds. The ADA technique is applied to accelerometer measurements from the Challenging Minisatellite Payload mission between 2003 and 2006 during quiet geomagnetic activity, revealing a climatological view of regularly occurring acceleration perturbation structures. The ADA technique reveals a structured acceleration enhancement on the dayside with a strong signature of density dominance confined to a spatial envelope ranging from 8:00 to 17:00 magnetic local time (MLT) and between 72° and 82° magnetic latitude, aligning with past observations of the cusp density enhancement. Additionally, this sector displays a wind perturbation structure with a reversal in direction that coincides with the center of the enhancement. The premidnight quadrant shows strong evidence of wind influence in the acceleration perturbations from 18:00 to 24:00 MLT between 70° and 90° magnetic latitude associated with southward wind perturbations. This suggests that past analyses of this region could have misidentified this structure as a density enhancement by neglecting in‐track wind influences in accelerometry‐derived mass density data sets. The early morning quadrant consists of negative acceleration perturbations attributed to density depletions, with signatures of southward wind perturbations. These mass density perturbations, in conjunction with in‐track wind perturbations, suggest that the coupled ionosphere‐thermosphere mechanisms responsible for the high‐latitude density structure also influence the wind structure. This work is supplemented with TIEGCM simulations to verify the accuracy of ADA and highlight discrepancies between the simulations and observations.  more » « less
Award ID(s):
2028032
PAR ID:
10646746
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
130
Issue:
8
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, the equatorial thermosphere anomaly (ETA) is investigated using accelerometer measurements to determine whether the feature is density‐dominated, wind‐dominated, or some combination of the two. An ascending‐descending accelerometry (ADA) technique is introduced to address the density‐wind ambiguity that appears when interpreting the ETA in atmospheric drag acceleration analyses. This technique separates ascending and descending acceleration measurements to determine if a wind's directionality influences the interpretation of the observed ETA feature. The ADA technique is applied to accelerometer measurements taken from the Challenging Minisatellite Payload mission and has revealed that the ETA is primarily density‐dominated from 9:00 to 16:00 local time (LT) near 400 km altitude, with the acceleration perturbations behaving similarly between 2003 and 2004 across all seasons. This finding suggests that the perturbations in the acceleration due to in‐track wind perturbations are small compared to the perturbations due to mass density, while indicating that the formation mechanisms across these local times are similar and persistent. The results also revealed that in the terminator region at 18:00 LT the acceleration perturbations deviate appreciably between ascending and descending passes, indicating different or multiple processes occurring at this local time compared to the 9:00–16:00 LT ascribed to the ETA. These results help constrain ETA formation theories to specific local times and thermospheric property responses without the use of supplemental wind measurements, while also indicating regions where in‐track winds cannot always be neglected. 
    more » « less
  2. Abstract Utilizing multistatic specular meteor radar (MSMR) observations, this study delves into global aspects of wind perturbations in the mesosphere and lower thermosphere (MLT) from the unprecedented 2022 eruption of the Hunga Tonga‐Hunga Ha'apai (HTHH) submarine volcano. The combination of MSMR observations from different viewing angles over South America and Europe, and the decomposition of the horizontal wind in components along and transversal to the HTHH eruption's epicenter direction allow an unambiguous detection and identification of MLT perturbations related to the eruption. The performance of this decomposition is evaluated using Whole Atmosphere Community Climate Model with thermosphere/ionosphere extension (WACCM‐X) simulations of the event. The approach shows that indeed the HTHH eruption signals are clearly identified, and other signals can be easily discarded. The winds in this decomposition display dominant Eastward soliton‐like perturbations observed as far as 25,000 km from HTHH, and propagating at 242 m/s. A weaker perturbation observed only over Europe propagates faster (but slower than 300 m/s) in the Westward direction. These results suggest that we might be observing the so‐called Pekeris mode, also consistent with theL1pseudomode, reproduced by WACCM‐X simulations at MLT altitudes. They also rule out the previous hypothesis connecting the observations in South America to the Tsunami associated with the eruption because these perturbations are observed over Europe as well. Despite the progress, theL0pseudomode in the MLT reproduced by WACCM‐X remains elusive to observations. 
    more » « less
  3. Abstract On 15 January 2022, the Hunga volcano produced a massive explosion that generated perturbations in the entire atmosphere. Nonetheless, signatures in the mesosphere and lower thermosphere (MLT) have been challenging to identify. We report MLT horizontal wind perturbations using three multistatic specular meteor radars on the west side of South America (spanning more than 3,000 km). The most notorious signal is an exceptional solitary wave with a large vertical wavelength observed around 18 UT at all three sites, with an amplitude of ∼50 m/s mainly in the westward direction. Using a customized analysis, the wave is characterized as traveling at ∼200 m/s, with a period of ∼2 hr and a horizontal wavelength of ∼1,440 km in the longitudinal direction, away from the source. The perturbation is consistent with anL1Lamb wave mode. The signal's timing coincides with the arrival time of the tsunami triggered by the eruption. 
    more » « less
  4. This study explores the meteorological source and vertical propagation of gravity waves (GWs) that drive daytime traveling ionospheric disturbances (TIDs), using the specified dynamics version of the SD-WACCM-X (Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension) and the SAMI3 (Sami3 is Also a Model of the Ionosphere) simulations driven by SD-WACCM-X neutral wind and composition. A cold weather front moved over the northern-central USA (90–100°W, 35–45°N) during the daytime of 20 October 2020, with strong upward airflow. GWs with ~500–700 km horizontal wavelengths propagated southward and northward in the thermosphere over the north-central USA. Also, the perturbations were coherent from the surface to the thermosphere; therefore, the GWs were likely generated by vertical acceleration associated with the cold front over Minnesota and South Dakota. The convectively generated GWs had almost infinite vertical wavelength below ~100 km due to being evanescent. This implies that the GWs tunneled through their evanescent region in the middle atmosphere (where a squared vertical wavenumber is equal to or smaller than 0) and became freely propagating in the thermosphere and ionosphere. Medium-scale TIDs (MSTIDs) also propagated southward with the GWs, suggesting that the convectively generated GWs created MSTIDs. 
    more » « less
  5. Abstract The Jiamusi (JME) radar is the first high‐frequency coherent scatter radar independently developed in China. In this study, we investigate the statistical characteristics of the Jiamusi radar scattering occurrence rate from the F‐region ionosphere between 40°N and 65°N geomagnetic latitude (MLAT) from March 2018 to November 2019. Then, the diurnal and seasonal variations in scattering echoes and their dependence on geomagnetic conditions are statistically investigated. It is shown that the local time of the peak scattering occurrence rate varies depending on the seasons, that is, approximately 20–22.5 magnetic local time (MLT) in summer, 17.5–20.5 MLT in equinox, and 16–17.5 MLT in winter, which is closely associated with the time of sunset. The occurrence rate also increases with the enhancement of the Kp index. To further understand the mechanism of these features, we simulate the distribution of the gradient drift instability (GDI) indicatorby using the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). The analysis results indicate that the GDI may be one of the factors that contribute to these characteristic features. 
    more » « less