skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct Fracture Mineralogy That is Out of Equilibrium With Modern Groundwaters Provides Important Context for Subsurface Life
Abstract Rock fracture surfaces in the crust are essential habitat for microorganisms. Fracture‐groundwater interfaces provide physical substrates for biofilm growth and are sources of carbon, nutrients, and electron donors and acceptors. To better understand geochemical processes impacting fracture surfaces and the subsurface microbiome, we identified fractures in archived rock cores from the Soudan formation, which is known to host saline groundwaters and isolated microbial communities dependent on rock‐water interactions. Cores with open fractures were thin sectioned and studied via electron microprobe and synchrotron X‐ray fluorescence microprobe. Most fracture surfaces had mineralogy distinct from that of the bulk rock. Chlorite minerals were abundant on fracture surfaces and had elemental compositions suggesting deposition during late‐stage hydrothermal alteration. Fracture‐lining chlorites likely limit access to iron oxide and sulfide minerals that are active in subsurface biogeochemical cycles. Calcium‐rich rinds were also observed along fracture edges. These rinds were too thin and poorly ordered to be identified via light microscopy or X‐ray diffraction; however, Ca K‐edge micro‐X‐ray absorption near‐edge structure spectroscopy identified them as carbonates, minerals not observed in the bulk rock. Thermodynamic modeling shows that carbonate precipitation is largely unfavorable in Soudan groundwaters, indicating that fracture edge conditions differed from those in modern water samples. Because of the low carbon concentrations in Soudan groundwaters, carbonate rinds likely play an important role in subsurface carbon cycling and may mark fracture surfaces that once hosted biofilms. Overall, this study suggests that fracture alteration can both play an active role in and suppress rock‐water interactions essential to subsurface life.  more » « less
Award ID(s):
1813526
PAR ID:
10646762
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
10
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We examine deformed crystalline bedrock in the upper parts of the active San Andreas and ancient San Gabriel Faults, southern California, to 1) determine the nature and origin of micro-scale composition and geochemistry of fault-related rocks, 2) constrain the extent of fluid-rock interactions, and 3) determine the interactions between alteration, mineralization, and deformation. We used drill cores from a 470 m long inclined borehole through the steep-dipping San Gabriel Fault and from seven inclined northeast-plunging boreholes across the San Andreas Fault zone to 150 m deep to show that narrow fault cores 10 cm to 5 m wide lie within 100s m wide damage zones. Petrographic, mineralogic, whole-rock geochemical analyses and synchrotron-based X-ray fluorescence mapping of drill core and thin sections of rocks from the damage zone and narrow principal slip surfaces reveal evidence for the development of early fracture networks, with iron and other transition element mineralization and alteration along the fractures. Alteration includes clay $$\pm$$ chlorite development, carbonate, and zeolite mineralization in matrix and fractures and the mobility of trace and transition elements. Carbonate-zeolite mineralization filled fractures and are associated with element mobility through the crystalline rocks. Textural evidence for repeated shearing, alteration, vein formation, brittle deformation, fault slip, pressure solution, and faulted rock re-lithification indicates significant hydrothermal alteration occurred during shallow-level deformation in the fault zones. The rock assemblages show that hydrothermal conditions in active faults develop at very shallow levels where seismic energy, heat, and fluids are focused. 
    more » « less
  2. 抄録 It is important to understand the long-term migration of radionuclides when considering long-lasting rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides pathways for fluid flow. The geometry of such a network can change due to fracture sealing by fine-grained material over extended periods of time. Groundwater commonly contains fine-grained material such as clay minerals, and it is probable that such minerals accumulate within rock fractures during groundwater flow, thereby decreasing fracture apertures and bulk permeability. It is therefore essential to conduct permeability measurements using water that includes fine-grained minerals in order to understand the evolving permeability characteristics of rock. However, this has not been studied to date in in-situ rock mass. Therefore, in the present study, we perform permeability measurements in a granite rock mass to investigate the change of permeability that occurs under the flow of water that includes clays. Our findings show that clay particles accumulate in fractures and that the permeability (hydraulic conductivity) of the granite rock mass decreases over time. The decrease was more significant in the earlier time. We conclude that the accumulation of clay minerals in the fracture decreases the permeability of a rock mass. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that contains clay minerals. 
    more » « less
  3. Abstract Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts. 
    more » « less
  4. ABSTRACT:Long-term deep sequestration of CO2-rich brine in deep formations of ultramafic rock (e.g. Oman serpentinized harzburgite) will be feasible only if a network of hydraulic cracks could be produced and made to grow for years and decades. Fraccing of gas- or oil-bearing shales has a similar objective. The following points are planned to be made in the presentation in Golden. 1) A branching of fracture can be analyzed only if the fracture is modeled by a band with triaxial tensorial damage, for which the new smooth Lagrangian crack band model is effective. 2) To achieve a progressive growth of the fracture network one will need to manipulate the osmotic pressure gradients by changing alkali metal ion concentration in pore fluid. 3) A standardized experimental framework to measure rock permeability at various ion concentrations and various osmotic pressure gradients is needed, and will be presented. 1 INTRODUCTIONCarbon dioxide (CO2) emissions by human activities is the largest contributor to global warming; therefore, effective carbon sequestration technologies attract great amount of interest. One emerging and promising technology for storing CO2 in the subsurface permanently is through carbon mineralization in mafic and ultramafic rock (Kelemen and Matter, 2008). Despite the abundance of these types of rock in the Earth's upper crust (Matter et al., 2016), the rate of this process in nature is too slow to reduce CO2 emissions effectively (Seifritz, 1990). One of the key challenges to achieve a sustainable and large-scale storage of CO2 by mineralization is to engineer a progressive growth of a fracture network conveying water with dissolved CO2 to reach a gradually increasing volume of the mafic rock formation. The CO2 rich water often cannot penetrate the tight matrix of silica-rich serpentinized harzburgites because under high concentrations of CO2, the wetting angle of CO2 -bearing water-rock-rock interface exceeds the critical value of 60 degrees. Therefore, the presence of a family of cracks is the only means by which CO2 -bearing fluids can interact with matrix of ultramafic rock (Bruce Watson and Brenan, 1987). Lateral fracture branching from a major fracture provides a sustainable fluid pathway and therefore is essential for continued rock-water geochemical reactions that lead to mineralization of carbonate minerals. Realistic computational modeling of hydraulic fractures in peridotite or basalt must involve lateral fracture branching and account for stress distribution changes between solid and fluid phases under constant tectonic stress, triggered by pore exposure to fluid pressure in hydraulic cracks. 
    more » « less
  5. null (Ed.)
    Abstract. The continuum of behavior that emerges during fracturenetwork development in crystalline rock may be categorized into threeend-member modes: fracture nucleation, isolated fracture propagation, andfracture coalescence. These different modes of fracture growth producefracture networks with distinctive geometric attributes, such as clusteringand connectivity, that exert important controls on permeability and theextent of fluid–rock interactions. To track how these modes of fracturedevelopment vary in dominance throughout loading toward failure and thushow the geometric attributes of fracture networks may vary under theseconditions, we perform in situ X-ray tomography triaxial compressionexperiments on low-porosity crystalline rock (monzonite) under upper-crustalstress conditions. To examine the influence of pore fluid on the varyingdominance of the three modes of growth, we perform two experiments undernominally dry conditions and one under water-saturated conditions with 5 MPa ofpore fluid pressure. We impose a confining pressure of 20–35 MPa and thenincrease the differential stress in steps until the rock failsmacroscopically. After each stress step of 1–5 MPa we acquire athree-dimensional (3D) X-ray adsorption coefficient field from which weextract the 3D fracture network. We develop a novel method of trackingindividual fractures between subsequent tomographic scans that identifieswhether fractures grow from the coalescence and linkage of several fracturesor from the propagation of a single fracture. Throughout loading in all ofthe experiments, the volume of preexisting fractures is larger than that ofnucleating fractures, indicating that the growth of preexisting fracturesdominates the nucleation of new fractures. Throughout loading until close tomacroscopic failure in all of the experiments, the volume of coalescingfractures is smaller than the volume of propagating fractures, indicatingthat fracture propagation dominates coalescence. Immediately precedingfailure, however, the volume of coalescing fractures is at least double thevolume of propagating fractures in the experiments performed at nominallydry conditions. In the water-saturated sample, in contrast, although thevolume of coalescing fractures increases during the stage preceding failure,the volume of propagating fractures remains dominant. The influence ofstress corrosion cracking associated with hydration reactions at fracturetips and/or dilatant hardening may explain the observed difference infracture development under dry and water-saturated conditions. 
    more » « less